Build a RAG chatbot with GKE and Cloud Storage


This tutorial shows you how to integrate a large language model (LLM) application based on retrieval-augmented generation (RAG) with PDF files that you upload to a Cloud Storage bucket.

This guide uses a database as a storage and semantic search engine that holds the representations (embeddings) of the uploaded documents. You use the Langchain framework to interact with the embeddings and you use Gemini models available through Vertex AI.

Langchain is a popular open-source Python framework that simplifies many machine learning tasks and has interfaces to integrate with different vector databases and AI services.

This tutorial is intended for cloud platform administrators and architects, ML engineers, and MLOps (DevOps) professionals interested in deploying RAG LLM applications to GKE and Cloud Storage.

Objectives

In this tutorial, you learn how to:

  • Build and deploy an application to create and store document embeddings in a vector database.
  • Automate the application to trigger new document uploads to a Cloud Storage bucket.
  • Deploy a chatbot application that uses semantic search to answer questions based on the document content.

Deployment architecture

In this tutorial, you create a Cloud Storage bucket, an Eventarc trigger, and the following Services:

  • embed-docs: Eventarc triggers this Service every time a user uploads a new document to the Cloud Storage bucket. The Service starts a Kubernetes Job which creates embeddings for the uploaded document and inserts the embeddings into a vector database.
  • chatbot: This Service answers natural language questions about the uploaded documents using semantic search and the Gemini API.

The following diagram shows the process of uploading and vectorizing documents:

In the diagram, the user uploads files into the Cloud Storage bucket. Eventarc subscribes to object metadataUpdated events for the bucket and uses Eventarc's event forwarder, which is a Kubernetes workload, to call the embed-docs Service when you upload a new document. The Service then creates embeddings for the uploaded document. The embed-docs Service stores the embeddings in a vector database using the Vertex AI embedding model.

The following diagram shows the process of asking questions about the uploaded document content using the chatbot Service:

Users can ask questions using natural language, and the chatbot generates answers based solely on the content of the uploaded files. The chatbot retrieves context from the vector database using semantic search, then sends the question and context to Gemini.

Costs

In this document, you use the following billable components of Google Cloud:

To generate a cost estimate based on your projected usage, use the pricing calculator. New Google Cloud users might be eligible for a free trial.

When you finish the tasks that are described in this document, you can avoid continued billing by deleting the resources that you created. For more information, see Clean up.

Before you begin

In this tutorial, you use Cloud Shell to run commands. Cloud Shell is a shell environment for managing resources hosted on Google Cloud. Cloud Shell comes preinstalled with the Google Cloud CLI, kubectl, and Terraform command-line tools. If you don't use Cloud Shell, install the Google Cloud CLI.

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.
  3. To initialize the gcloud CLI, run the following command:

    gcloud init
  4. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Vertex AI, Cloud Build, Eventarc, Artifact Registry APIs:

    gcloud services enable aiplatform.googleapis.com cloudbuild.googleapis.com eventarc.googleapis.com artifactregistry.googleapis.com
  7. Install the Google Cloud CLI.
  8. To initialize the gcloud CLI, run the following command:

    gcloud init
  9. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  10. Make sure that billing is enabled for your Google Cloud project.

  11. Enable the Vertex AI, Cloud Build, Eventarc, Artifact Registry APIs:

    gcloud services enable aiplatform.googleapis.com cloudbuild.googleapis.com eventarc.googleapis.com artifactregistry.googleapis.com
  12. Grant roles to your user account. Run the following command once for each of the following IAM roles: eventarc.admin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
    • Replace PROJECT_ID with your project ID.
    • Replace USER_IDENTIFIER with the identifier for your user account. For example, user:myemail@example.com.

    • Replace ROLE with each individual role.

Create a cluster

Create a Qdrant, Elasticsearch, or Postgres cluster:

Qdrant

Follow the instructions in Deploy a Qdrant vector database on GKE to create a Qdrant cluster running on an Autopilot mode or Standard mode GKE cluster.

Elasticsearch

Follow the instructions in Deploy an Elasticsearch vector database on GKE to create an Elasticsearch cluster running on an Autopilot mode or Standard mode GKE cluster.

PGVector

Follow the instructions in Deploy a PostgreSQL vector database on GKE to create a Postgres cluster with PGVector running on an Autopilot mode or Standard mode GKE cluster.

Weaviate

Follow the instructions to Deploy a Weaviate vector database on GKE to create a Weaviate cluster running on an Autopilot or Standard mode GKE cluster.

Set up your environment

Set up your environment with Cloud Shell:

  1. Set environment variables for your project:

    Qdrant

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=qdrant
    export REGION=us-central1
    export DB_NAMESPACE=qdrant
    

    Replace PROJECT_ID with your Google Cloud project ID.

    Elasticsearch

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=elasticsearch
    export REGION=us-central1
    export DB_NAMESPACE=elastic
    

    Replace PROJECT_ID with your Google Cloud project ID.

    PGVector

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=postgres
    export REGION=us-central1
    export DB_NAMESPACE=pg-ns
    

    Replace PROJECT_ID with your Google Cloud project ID.

    Weaviate

    export PROJECT_ID=PROJECT_ID
    export KUBERNETES_CLUSTER_PREFIX=weaviate
    export REGION=us-central1
    export DB_NAMESPACE=weaviate
    

    Replace PROJECT_ID with your Google Cloud project ID.

  2. Verify that your GKE cluster is running:

    gcloud container clusters list --project=${PROJECT_ID} --region=${REGION}
    

    The output is similar to the following:

    NAME                                    LOCATION        MASTER_VERSION      MASTER_IP     MACHINE_TYPE  NODE_VERSION        NUM_NODES STATUS
    [KUBERNETES_CLUSTER_PREFIX]-cluster   us-central1   1.30.1-gke.1329003  <EXTERNAL IP> e2-standard-2 1.30.1-gke.1329003   6        RUNNING
    
  3. Clone the sample code repository from GitHub:

    git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples
    
  4. Navigate to the databases directory:

    cd kubernetes-engine-samples/databases
    

Prepare your infrastructure

Create an Artifact Registry repository, build Docker images, and push Docker images to Artifact Registry:

  1. Create an Artifact Registry repository:

    gcloud artifacts repositories create ${KUBERNETES_CLUSTER_PREFIX}-images \
        --repository-format=docker \
        --location=${REGION} \
        --description="Vector database images repository" \
        --async
    
  2. Set the storage.objectAdmin and artifactregistry.admin permissions on the Compute Engine service account to use Cloud Build to build and push Docker images for the embed-docs and chatbot Services.

    export PROJECT_NUMBER=PROJECT_NUMBER
    
    gcloud projects add-iam-policy-binding ${PROJECT_ID}  \
    --member="serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com" \
    --role="roles/storage.objectAdmin"
    
    gcloud projects add-iam-policy-binding ${PROJECT_ID}  \
    --member="serviceAccount:${PROJECT_NUMBER}-compute@developer.gserviceaccount.com" \
    --role="roles/artifactregistry.admin"
    

    Replace PROJECT_NUMBER with your Google Cloud project number.

  3. Build Docker images for the embed-docs and chatbot Services. The embed-docs image contains Python code for both the application that receives Eventarc forwarder requests and the embedding job.

    Qdrant

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit qdrant/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit qdrant/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    Elasticsearch

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit elasticsearch/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit elasticsearch/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    PGVector

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit postgres-pgvector/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit postgres-pgvector/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    

    Weaviate

    export DOCKER_REPO="${REGION}-docker.pkg.dev/${PROJECT_ID}/${KUBERNETES_CLUSTER_PREFIX}-images"
    gcloud builds submit weaviate/docker/chatbot --region=${REGION} \
      --tag ${DOCKER_REPO}/chatbot:1.0 --async
    gcloud builds submit weaviate/docker/embed-docs --region=${REGION} \
      --tag ${DOCKER_REPO}/embed-docs:1.0 --async
    
  4. Verify the images:

    gcloud artifacts docker images list $DOCKER_REPO \
        --project=$PROJECT_ID \
        --format="value(IMAGE)"
    

    The output is similar to the following:

    $REGION-docker.pkg.dev/$PROJECT_ID/${KUBERNETES_CLUSTER_PREFIX}-images/chatbot
    $REGION-docker.pkg.dev/$PROJECT_ID/${KUBERNETES_CLUSTER_PREFIX}-images/embed-docs
    
  5. Deploy a Kubernetes Service Account with permissions to run Kubernetes Jobs:

    Qdrant

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" qdrant/manifests/05-rag/service-account.yaml | kubectl -n qdrant apply -f -
    

    Elasticsearch

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" elasticsearch/manifests/05-rag/service-account.yaml | kubectl -n elastic apply -f -
    

    PGVector

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" postgres-pgvector/manifests/03-rag/service-account.yaml | kubectl -n pg-ns apply -f -
    

    Weaviate

    sed "s/<PROJECT_ID>/$PROJECT_ID/;s/<CLUSTER_PREFIX>/$KUBERNETES_CLUSTER_PREFIX/" weaviate/manifests/04-rag/service-account.yaml | kubectl -n weaviate apply -f -
    
  6. Deploy a Kubernetes Deployment for the embed-docs and chatbot Services:

    Qdrant

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" qdrant/manifests/05-rag/chatbot.yaml | kubectl -n qdrant apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" qdrant/manifests/05-rag/docs-embedder.yaml | kubectl -n qdrant apply -f -
    

    Elasticsearch

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" elasticsearch/manifests/05-rag/chatbot.yaml | kubectl -n elastic apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" elasticsearch/manifests/05-rag/docs-embedder.yaml | kubectl -n elastic apply -f -
    

    PGVector

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" postgres-pgvector/manifests/03-rag/chatbot.yaml | kubectl -n pg-ns apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" postgres-pgvector/manifests/03-rag/docs-embedder.yaml | kubectl -n pg-ns apply -f -
    

    Weaviate

    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" weaviate/manifests/04-rag/chatbot.yaml | kubectl -n weaviate apply -f -
    sed "s|<DOCKER_REPO>|$DOCKER_REPO|" weaviate/manifests/04-rag/docs-embedder.yaml | kubectl -n weaviate apply -f -
    
  7. Enable Eventarc triggers for GKE:

    gcloud eventarc gke-destinations init
    

    When prompted, enter y.

  8. Deploy the Cloud Storage bucket and create an Eventarc trigger using Terraform:

    export GOOGLE_OAUTH_ACCESS_TOKEN=$(gcloud auth print-access-token)
    terraform -chdir=vector-database/terraform/cloud-storage init
    terraform -chdir=vector-database/terraform/cloud-storage apply \
      -var project_id=${PROJECT_ID} \
      -var region=${REGION} \
      -var cluster_prefix=${KUBERNETES_CLUSTER_PREFIX} \
      -var db_namespace=${DB_NAMESPACE}
    

    When prompted, type yes. It might take several minutes for the command to complete.

    Terraform creates the following resources:

    • A Cloud Storage bucket to upload the documents
    • An Eventarc trigger
    • A Google Cloud Service Account named service_account_eventarc_name with permission to use Eventarc.
    • A Google Cloud Service Account named service_account_bucket_name with permission to read the bucket and access Vertex AI models.

    The output is similar to the following:

    ... # Several lines of output omitted
    
    Apply complete! Resources: 15 added, 0 changed, 0 destroyed.
    
    ... # Several lines of output omitted
    

Load documents and run chatbot queries

Upload the demo documents and run queries to search over the demo documents using the chatbot:

  1. Upload the example carbon-free-energy.pdf document to your bucket:

    gsutil cp vector-database/documents/carbon-free-energy.pdf gs://${PROJECT_ID}-${KUBERNETES_CLUSTER_PREFIX}-training-docs
    
  2. Verify the document embedder job completed successfully:

    kubectl get job -n ${DB_NAMESPACE}
    

    The output is similar to the following:

    NAME                            COMPLETIONS   DURATION   AGE
    docs-embedder1716570453361446   1/1           32s        71s
    
  3. Get the external IP address of the load balancer:

    export EXTERNAL_IP=$(kubectl -n ${DB_NAMESPACE} get svc chatbot --output jsonpath='{.status.loadBalancer.ingress[0].ip}')
    echo http://${EXTERNAL_IP}:80
    
  4. Open the external IP address in your web browser:

    http://EXTERNAL_IP
    

    The chatbot responds with a message similar to the following:

    How can I help you?
    
  5. Ask questions about the content of the uploaded documents. If the chatbot cannot find anything, it answers I don't know. For example, you could ask the following:

    You: Hi, what are Google plans for the future?
    

    An example output from the chatbot is similar to the following:

    Bot: Google intends to run on carbon-free energy everywhere, at all times by 2030. To achieve this, it will rely on a combination of renewable energy sources, such as wind and solar, and carbon-free technologies, such as battery storage.
    
  6. Ask the chatbot a question that is out of context of the uploaded document. For example, you could ask the following:

    You: What are Google plans to colonize Mars?
    

    An example output from the chatbot is similar to the following:

    Bot: I don't know. The provided context does not mention anything about Google's plans to colonize Mars.
    

About the application code

This section explains how the application code works. There are three scripts inside the Docker images:

  • endpoint.py: receives Eventarc events on each document upload and starts the Kubernetes Jobs to process them.
  • embedding-job.py: downloads documents from the bucket, creates embeddings, and insert embeddings into the vector database.
  • chat.py: runs queries over the content of stored documents.

The diagram shows the process of generating answers using the documents data:

In the diagram, the application loads a PDF file, splits the file into chunks, then vectors, then sends the vectors to a vector database. Later, a user asks a question to the chatbot. The RAG chain uses semantic search to search the vector database, then returns the context along with the question to the LLM. The LLM answers the question, and stores the question into chat history.

About endpoint.py

This file processes messages from Eventarc, creates a Kubernetes Job for embedding the document, and accepts request from anywhere on port 5001

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="qdrant", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="QDRANT_URL", value=os.getenv("QDRANT_URL")),
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="api-key", name="qdrant-database-apikey"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()

def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="elastic", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="ES_URL", value=os.getenv("ES_URL")),
        client.V1EnvVar(name="INDEX_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="PASSWORD", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="elastic", name="elasticsearch-ha-es-elastic-user"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body

def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="pg-ns", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="POSTGRES_HOST", value=os.getenv("POSTGRES_HOST")),
        client.V1EnvVar(name="DATABASE_NAME", value="app"), 
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="PASSWORD", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="password", name="gke-pg-cluster-app"))), 
        client.V1EnvVar(name="USERNAME", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="username", name="gke-pg-cluster-app"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace, container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="WEAVIATE_ENDPOINT", value=os.getenv("WEAVIATE_ENDPOINT")),
        client.V1EnvVar(name="WEAVIATE_GRPC_ENDPOINT", value=os.getenv("WEAVIATE_GRPC_ENDPOINT")),
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="AUTHENTICATION_APIKEY_ALLOWED_KEYS", name="apikeys"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, image_pull_policy='Always', env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name, namespace)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

About embedding-job.py

This file processes documents and sends them to the vector database.

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.vectorstores import Qdrant
from qdrant_client import QdrantClient
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

client = QdrantClient(
    url=os.getenv("QDRANT_URL"),
    api_key=os.getenv("APIKEY"),
)
collection_name = os.getenv("COLLECTION_NAME")
vector_search = Qdrant(client, collection_name, embeddings=embedding_model)
def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]
if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bob",
        human_prefix="User",
        k=3,
    )
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])
if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bob", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from elasticsearch import Elasticsearch
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
from google.cloud import storage
import os

bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

client = Elasticsearch(
    [os.getenv("ES_URL")], 
    verify_certs=False, 
    ssl_show_warn=False,
    basic_auth=("elastic", os.getenv("PASSWORD"))
)

db = ElasticsearchStore.from_documents(
    documents,
    embeddings,
    es_connection=client,
    index_name=os.getenv("INDEX_NAME")
)
db.client.indices.refresh(index=os.getenv("INDEX_NAME"))

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores.pgvector import PGVector
from google.cloud import storage
import os
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)
for document in documents:
    document.page_content = document.page_content.replace('\x00', '')

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

CONNECTION_STRING = PGVector.connection_string_from_db_params(
    driver="psycopg2",
    host=os.environ.get("POSTGRES_HOST"),
    port=5432,
    database=os.environ.get("DATABASE_NAME"),
    user=os.environ.get("USERNAME"),
    password=os.environ.get("PASSWORD"),
)
COLLECTION_NAME = os.environ.get("COLLECTION_NAME")

db = PGVector.from_documents(
    embedding=embeddings,
    documents=documents,
    collection_name=COLLECTION_NAME,
    connection_string=CONNECTION_STRING,
    use_jsonb=True
)

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import VertexAIEmbeddings
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
from google.cloud import storage
import os
bucketname = os.getenv("BUCKET_NAME")
filename = os.getenv("FILE_NAME")

storage_client = storage.Client()
bucket = storage_client.bucket(bucketname)
blob = bucket.blob(filename)
blob.download_to_filename("/documents/" + filename)

loader = PyPDFLoader("/documents/" + filename)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
documents = loader.load_and_split(text_splitter)

embeddings = VertexAIEmbeddings("textembedding-gecko@001")

auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
    connection_params=ConnectionParams.from_params(
        http_host=os.getenv("WEAVIATE_ENDPOINT"),
        http_port="80",
        http_secure=False,
        grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
        grpc_port="50051",
        grpc_secure=False,
    ),
    auth_client_secret=auth_config
)
client.connect()
if not client.collections.exists("trainingdocs"):
    collection = client.collections.create(name="trainingdocs")
db = WeaviateVectorStore.from_documents(documents, embeddings, client=client, index_name="trainingdocs")

print(filename + " was successfully embedded") 
print(f"# of vectors = {len(documents)}")

About chat.py

This file configures the model to answer questions using only the provided context and previous answers. If the context or conversation history does not match any data, the model returns I don't know.

Qdrant

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from flask import Flask, jsonify
from flask import request
import logging
import sys,os, time
from kubernetes import client, config, utils
import kubernetes.client
from kubernetes.client.rest import ApiException


app = Flask(__name__)
@app.route('/check')
def message():
    return jsonify({"Message": "Hi there"})


@app.route('/', methods=['POST'])
def bucket():
    request_data = request.get_json()
    print(request_data)
    bckt = request_data['bucket']
    f_name = request_data['name']
    id = request_data['generation'] 
    kube_create_job(bckt, f_name, id)
    return "ok"

# Set logging
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

# Setup K8 configs
config.load_incluster_config()
def kube_create_job_object(name, container_image, bucket_name, f_name, namespace="qdrant", container_name="jobcontainer", env_vars={}):

    body = client.V1Job(api_version="batch/v1", kind="Job")
    body.metadata = client.V1ObjectMeta(namespace=namespace, name=name)
    body.status = client.V1JobStatus()

    template = client.V1PodTemplate()
    template.template = client.V1PodTemplateSpec()
    env_list = [
        client.V1EnvVar(name="QDRANT_URL", value=os.getenv("QDRANT_URL")),
        client.V1EnvVar(name="COLLECTION_NAME", value="training-docs"), 
        client.V1EnvVar(name="FILE_NAME", value=f_name), 
        client.V1EnvVar(name="BUCKET_NAME", value=bucket_name),
        client.V1EnvVar(name="APIKEY", value_from=client.V1EnvVarSource(secret_key_ref=client.V1SecretKeySelector(key="api-key", name="qdrant-database-apikey"))), 
    ]

    container = client.V1Container(name=container_name, image=container_image, env=env_list)
    template.template.spec = client.V1PodSpec(containers=[container], restart_policy='Never', service_account='embed-docs-sa')

    body.spec = client.V1JobSpec(backoff_limit=3, ttl_seconds_after_finished=60, template=template.template)
    return body
def kube_test_credentials():
    try: 
        api_response = api_instance.get_api_resources()
        logging.info(api_response)
    except ApiException as e:
        print("Exception when calling API: %s\n" % e)

def kube_create_job(bckt, f_name, id):
    container_image = os.getenv("JOB_IMAGE")
    namespace = os.getenv("JOB_NAMESPACE")
    name = "docs-embedder" + id
    body = kube_create_job_object(name, container_image, bckt, f_name)
    v1=client.BatchV1Api()
    try: 
        v1.create_namespaced_job(namespace, body, pretty=True)
    except ApiException as e:
        print("Exception when calling BatchV1Api->create_namespaced_job: %s\n" % e)
    return

if __name__ == '__main__':
    app.run('0.0.0.0', port=5001, debug=True)

Elasticsearch

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from elasticsearch import Elasticsearch
from langchain_community.vectorstores.elasticsearch import ElasticsearchStore
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

client = Elasticsearch(
    [os.getenv("ES_URL")], 
    verify_certs=False, 
    ssl_show_warn=False,
    basic_auth=("elastic", os.getenv("PASSWORD"))
)
vector_search = ElasticsearchStore(
    index_name=os.getenv("INDEX_NAME"),
    es_connection=client,
    embedding=embedding_model
)

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

PGVector

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain_community.vectorstores.pgvector import PGVector
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

CONNECTION_STRING = PGVector.connection_string_from_db_params(
    driver="psycopg2",
    host=os.environ.get("POSTGRES_HOST"),
    port=5432,
    database=os.environ.get("DATABASE_NAME"),
    user=os.environ.get("USERNAME"),
    password=os.environ.get("PASSWORD"),
)
COLLECTION_NAME = os.environ.get("COLLECTION_NAME"),

vector_search = PGVector(
    collection_name=COLLECTION_NAME,
    connection_string=CONNECTION_STRING,
    embedding_function=embedding_model,
)

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Weaviate

# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from langchain_google_vertexai import ChatVertexAI
from langchain.prompts import ChatPromptTemplate
from langchain_google_vertexai import VertexAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
import weaviate
from weaviate.connect import ConnectionParams
from langchain_weaviate.vectorstores import WeaviateVectorStore
import streamlit as st
import os

vertexAI = ChatVertexAI(model_name="gemini-pro", streaming=True, convert_system_message_to_human=True)
prompt_template = ChatPromptTemplate.from_messages(
    [
        ("system", "You are a helpful assistant who helps in finding answers to questions using the provided context."),
        ("human", """
        The answer should be based on the text context given in "text_context" and the conversation history given in "conversation_history" along with its Caption: \n
        Base your response on the provided text context and the current conversation history to answer the query.
        Select the most relevant information from the context.
        Generate a draft response using the selected information. Remove duplicate content from the draft response.
        Generate your final response after adjusting it to increase accuracy and relevance.
        Now only show your final response!
        If you do not know the answer or context is not relevant, response with "I don't know".

        text_context:
        {context}

        conversation_history:
        {history}

        query:
        {query}
        """),
    ]
)

embedding_model = VertexAIEmbeddings("textembedding-gecko@001")

auth_config = weaviate.auth.AuthApiKey(api_key=os.getenv("APIKEY"))
client = weaviate.WeaviateClient(
    connection_params=ConnectionParams.from_params(
        http_host=os.getenv("WEAVIATE_ENDPOINT"),
        http_port="80",
        http_secure=False,
        grpc_host=os.getenv("WEAVIATE_GRPC_ENDPOINT"),
        grpc_port="50051",
        grpc_secure=False,
    ),
    auth_client_secret=auth_config
)
client.connect()

vector_search = WeaviateVectorStore.from_documents([],embedding_model,client=client, index_name="trainingdocs")

def format_docs(docs):
    return "\n\n".join([d.page_content for d in docs])

st.title("🤖 Chatbot")
if "messages" not in st.session_state:
    st.session_state["messages"] = [{"role": "ai", "content": "How can I help you?"}]

if "memory" not in st.session_state:
    st.session_state["memory"] = ConversationBufferWindowMemory(
        memory_key="history",
        ai_prefix="Bot",
        human_prefix="User",
        k=3,
    )

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

if chat_input := st.chat_input():
    with st.chat_message("human"):
        st.write(chat_input)
        st.session_state.messages.append({"role": "human", "content": chat_input})

    found_docs = vector_search.similarity_search(chat_input)
    context = format_docs(found_docs)

    prompt_value = prompt_template.format_messages(name="Bot", query=chat_input, context=context, history=st.session_state.memory.load_memory_variables({}))
    with st.chat_message("ai"):
        with st.spinner("Typing..."):
            content = ""
            with st.empty():
                for chunk in vertexAI.stream(prompt_value):
                    content += chunk.content
                    st.write(content)
            st.session_state.messages.append({"role": "ai", "content": content})

    st.session_state.memory.save_context({"input": chat_input}, {"output": content})

Clean up

To avoid incurring charges to your Google Cloud account for the resources used in this tutorial, either delete the project that contains the resources, or keep the project and delete the individual resources.

Delete the project

The easiest way to avoid billing is to delete the project you created for this tutorial.

Delete a Google Cloud project:

gcloud projects delete PROJECT_ID

If you deleted the project, your clean up is complete. If you didn't delete the project, proceed to delete the individual resources.

Delete individual resources

  1. Delete the Artifact Registry repository:

    gcloud artifacts repositories delete ${KUBERNETES_CLUSTER_PREFIX}-images \
        --location=${REGION} \
        --async
    

    When prompted, type y.

  2. Delete the Cloud Storage bucket and the Eventarc trigger:

    export GOOGLE_OAUTH_ACCESS_TOKEN=$(gcloud auth print-access-token)
    terraform -chdir=vector-database/terraform/cloud-storage destroy \
      -var project_id=${PROJECT_ID} \
      -var region=${REGION} \
      -var cluster_prefix=${KUBERNETES_CLUSTER_PREFIX} \
      -var db_namespace=${DB_NAMESPACE}
    

    When prompted, type yes.

    Eventarc requires that you have a valid endpoint target both during creation and during deletion.

What's next