Halaman ini menjelaskan cara menyesuaikan deployment GKE Inference Gateway.
Halaman ini ditujukan untuk spesialis Jaringan yang bertanggung jawab mengelola infrastruktur GKE, dan administrator platform yang mengelola workload AI.
Untuk mengelola dan mengoptimalkan workload inferensi, Anda mengonfigurasi fitur lanjutan GKE Inference Gateway.
Pahami dan konfigurasikan fitur lanjutan berikut:
- Untuk menggunakan integrasi Model Armor, konfigurasi pemeriksaan keamanan dan keamanan AI.
- Untuk melihat GKE Inference Gateway dan metrik serta dasbor server model, dan mengaktifkan logging akses HTTP untuk informasi permintaan dan respons yang mendetail, konfigurasi visibilitas
- Untuk menskalakan deployment GKE Inference Gateway secara otomatis, konfigurasi penskalaan otomatis.
Mengonfigurasi pemeriksaan keamanan dan keselamatan AI
GKE Inference Gateway terintegrasi dengan Model Armor untuk melakukan pemeriksaan keamanan pada perintah dan respons untuk aplikasi yang menggunakan model bahasa besar (LLM). Integrasi ini memberikan lapisan penerapan keamanan tambahan di tingkat infrastruktur yang melengkapi tindakan keamanan tingkat aplikasi. Hal ini memungkinkan penerapan kebijakan terpusat di semua traffic LLM.
Diagram berikut mengilustrasikan integrasi Model Armor dengan GKE Inference Gateway di cluster GKE:

Untuk mengonfigurasi pemeriksaan keamanan AI, lakukan langkah-langkah berikut:
Pastikan prasyarat berikut terpenuhi:
- Aktifkan layanan Model Armor di project Google Cloud Anda.
- Buat template Model Armor menggunakan konsol Model Armor, Google Cloud CLI, atau API.
Pastikan Anda telah membuat template Model Armor bernama
my-model-armor-template-name-id
.Untuk mengonfigurasi
GCPTrafficExtension
, lakukan langkah-langkah berikut:Simpan manifes contoh berikut sebagai
gcp-traffic-extension.yaml
:kind: GCPTrafficExtension apiVersion: networking.gke.io/v1 metadata: name: my-model-armor-extension spec: targetRefs: - group: "gateway.networking.k8s.io" kind: Gateway name: GATEWAY_NAME extensionChains: - name: my-model-armor-chain1 matchCondition: celExpressions: - celMatcher: request.path.startsWith("/") extensions: - name: my-model-armor-service supportedEvents: - RequestHeaders timeout: 1s googleAPIServiceName: "modelarmor.us-central1.rep.googleapis.com" metadata: 'extensionPolicy': MODEL_ARMOR_TEMPLATE_NAME 'sanitizeUserPrompt': 'true' 'sanitizeUserResponse': 'true'
Ganti kode berikut:
GATEWAY_NAME
: nama Gateway.MODEL_ARMOR_TEMPLATE_NAME
: nama template Model Armor Anda.
File
gcp-traffic-extension.yaml
menyertakan setelan berikut:targetRefs
: menentukan Gateway tempat ekstensi ini berlaku.extensionChains
: menentukan rantai ekstensi yang akan diterapkan ke traffic.matchCondition
: menentukan kondisi penerapan ekstensi.extensions
: menentukan ekstensi yang akan diterapkan.supportedEvents
: menentukan peristiwa selama ekstensi dipanggil.timeout
: menentukan waktu tunggu untuk ekstensi.googleAPIServiceName
: menentukan nama layanan untuk ekstensi.metadata
: menentukan metadata untuk ekstensi, termasukextensionPolicy
dan setelan pembersihan perintah atau respons.
Terapkan manifes contoh ke cluster Anda:
kubectl apply -f `gcp-traffic-extension.yaml`
Setelah Anda mengonfigurasi pemeriksaan keamanan AI dan mengintegrasikannya dengan Gateway, Model Armor akan otomatis memfilter perintah dan respons berdasarkan aturan yang ditentukan.
Mengonfigurasi kemampuan observasi
GKE Inference Gateway memberikan insight tentang kondisi, performa, dan perilaku workload inferensi Anda. Hal ini membantu Anda mengidentifikasi dan menyelesaikan masalah, mengoptimalkan penggunaan resource, dan memastikan keandalan aplikasi Anda.
Google Cloud menyediakan dasbor Cloud Monitoring berikut yang menawarkan kemampuan observasi inferensi untuk GKE Inference Gateway:
- Dasbor GKE Inference Gateway: menyediakan metrik emas untuk penayangan LLM, seperti throughput permintaan dan token, latensi, error, dan penggunaan cache untuk
InferencePool
. Untuk melihat daftar lengkap metrik GKE Inference Gateway yang tersedia, lihat Metrik yang ditampilkan. - Dasbor server model: menyediakan
dasbor untuk sinyal emas server model. Hal ini memungkinkan Anda memantau beban dan performa server model, seperti
KVCache Utilization
danQueue length
. Hal ini memungkinkan Anda memantau beban dan performa server model. - Dasbor load balancer: melaporkan metrik dari load balancer, seperti permintaan per detik, latensi penayangan permintaan end-to-end, dan kode status permintaan-respons. Metrik ini membantu Anda memahami performa penayangan permintaan menyeluruh dan mengidentifikasi error.
- Metrik Data Center GPU Manager (DCGM): memberikan metrik dari GPU NVIDIA, seperti performa dan penggunaan GPU NVIDIA. Anda dapat mengonfigurasi metrik NVIDIA Data Center GPU Manager (DCGM) di Cloud Monitoring. Untuk informasi selengkapnya, lihat Mengumpulkan dan melihat metrik DCGM.
Melihat dasbor GKE Inference Gateway
Untuk melihat dasbor GKE Inference Gateway, lakukan langkah-langkah berikut:
Di Google Cloud console, buka halaman Monitoring.
Di panel navigasi, pilih Dashboard.
Di bagian Integrasi, pilih GMP.
Di halaman Cloud Monitoring Dashboard Templates, telusuri "Gateway".
Lihat dasbor GKE Inference Gateway.
Atau, Anda dapat mengikuti petunjuk di Dasbor Monitoring.
Mengonfigurasi dasbor visibilitas server model
Untuk mengumpulkan sinyal emas dari setiap server model dan memahami hal yang berkontribusi pada performa GKE Inference Gateway, Anda dapat mengonfigurasi pemantauan otomatis untuk server model. Hal ini mencakup server model seperti berikut:
Untuk melihat dasbor integrasi, lakukan langkah-langkah berikut:
- Kumpulkan metrik dari server model Anda.
Di Google Cloud console, buka halaman Monitoring.
Di panel navigasi, pilih Dashboard.
Di bagian Integrations, pilih GMP. Dasbor integrasi yang sesuai akan ditampilkan.
Gambar: Dasbor integrasi
Untuk informasi selengkapnya, lihat Menyesuaikan pemantauan untuk aplikasi.
Mengonfigurasi dasbor visibilitas load balancer
Untuk menggunakan Load Balancer Aplikasi dengan GKE Inference Gateway, impor dasbor dengan melakukan langkah-langkah berikut:
Untuk membuat dasbor load balancer, buat file berikut dan simpan sebagai
dashboard.json
:{ "displayName": "GKE Inference Gateway (Load Balancer) Prometheus Overview", "dashboardFilters": [ { "filterType": "RESOURCE_LABEL", "labelKey": "cluster", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "location", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "namespace", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "forwarding_rule_name", "templateVariable": "", "valueType": "STRING" } ], "labels": {}, "mosaicLayout": { "columns": 48, "tiles": [ { "height": 8, "width": 48, "widget": { "title": "", "id": "", "text": { "content": "### Inferece Gateway Metrics\n\nPlease refer to the [official documentation](https://github.com/kubernetes-sigs/gateway-api-inference-extension/blob/main/site-src/guides/metrics.md) for more details of underlying metrics used in the dashboard.\n\n\n### External Application Load Balancer Metrics\n\nPlease refer to the [pubic page](/load-balancing/docs/metrics) for complete list of External Application Load Balancer metrics.\n\n### Model Server Metrics\n\nYou can redirect to the detail dashboard for model servers under the integration tab", "format": "MARKDOWN", "style": { "backgroundColor": "#FFFFFF", "fontSize": "FS_EXTRA_LARGE", "horizontalAlignment": "H_LEFT", "padding": "P_EXTRA_SMALL", "pointerLocation": "POINTER_LOCATION_UNSPECIFIED", "textColor": "#212121", "verticalAlignment": "V_TOP" } } } }, { "yPos": 8, "height": 4, "width": 48, "widget": { "title": "External Application Load Balancer", "id": "", "sectionHeader": { "dividerBelow": false, "subtitle": "" } } }, { "yPos": 12, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p99 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.99, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 12, "height": 43, "width": 48, "widget": { "title": "Regional", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 12, "xPos": 24, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p95 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 27, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p90 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.90, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 27, "xPos": 24, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p50 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.50, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 42, "height": 13, "width": 48, "widget": { "title": "Request /s (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (response_code)(rate(loadbalancing_googleapis_com:https_external_regional_request_count{monitored_resource=\"http_external_regional_lb_rule\", forwarding_rule_name=~\".*inference-gateway.*\"}[1m]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 55, "height": 4, "width": 48, "widget": { "title": "Inference Optimized Gateway", "id": "", "sectionHeader": { "dividerBelow": false, "subtitle": "" } } }, { "yPos": 59, "height": 17, "width": 48, "widget": { "title": "Request Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 59, "height": 65, "width": 48, "widget": { "title": "Inference Model", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 76, "height": 16, "width": 24, "widget": { "title": "Request / s", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name, target_model_name) (rate(inference_model_request_total{}[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 76, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Request Error / s", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (error_code,model_name,target_model_name) (rate(inference_model_request_error_total[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 92, "height": 16, "width": 24, "widget": { "title": "Request Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 92, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Response Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 108, "height": 16, "width": 24, "widget": { "title": "Input Token Count", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 108, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Output Token Count", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 124, "height": 16, "width": 24, "widget": { "title": "Average KV Cache Utilization", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (name)(avg_over_time(inference_pool_average_kv_cache_utilization[${__interval}]))*100", "unitOverride": "%" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 124, "height": 16, "width": 48, "widget": { "title": "Inference Pool", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 124, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Average Queue Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (name) (avg_over_time(inference_pool_average_queue_size[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 140, "height": 4, "width": 48, "widget": { "title": "Model Server", "id": "", "sectionHeader": { "dividerBelow": true, "subtitle": "The following charts will only be populated if model server is exporting metrics." } } }, { "yPos": 144, "height": 32, "width": 48, "widget": { "title": "vLLM", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 144, "xPos": 1, "height": 16, "width": 24, "widget": { "title": "Token Throughput", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "Prompt Tokens/Sec", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name) (rate(vllm:prompt_tokens_total[${__interval}]))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "Generation Tokens/Sec", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name) (rate(vllm:generation_tokens_total[${__interval}]))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 144, "xPos": 25, "height": 16, "width": 23, "widget": { "title": "Request Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 160, "xPos": 1, "height": 16, "width": 24, "widget": { "title": "Time Per Output Token Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 160, "xPos": 25, "height": 16, "width": 23, "widget": { "title": "Time To First Token Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } } ] } }
Untuk menginstal dasbor ke Google Cloud Armor, jalankan perintah berikut:
gcloud monitoring dashboards create --project $PROJECT_ID --config-from-file=dashboard.json
Buka halaman Monitoring di Google Cloud console.
Di menu navigasi, pilih Dasbor.
Pilih dasbor Ringkasan Prometheus Inference Optimized Gateway (dengan L7LB) dari daftar dasbor kustom.
Bagian Load Balancer Aplikasi Eksternal menampilkan metrik load balancing berikut:
- E2E Request Latency p99 (by code): menampilkan persentil ke-99 dari latensi permintaan menyeluruh untuk permintaan yang ditayangkan load balancer, yang digabungkan berdasarkan kode status yang ditampilkan.
- Permintaan (menurut kode): menampilkan jumlah permintaan yang ditayangkan load balancer, yang digabungkan menurut kode status yang ditampilkan.
Mengonfigurasi logging untuk GKE Inference Gateway
Mengonfigurasi logging untuk GKE Inference Gateway memberikan informasi mendetail tentang permintaan dan respons, yang berguna untuk pemecahan masalah, audit, dan analisis performa. Log akses HTTP mencatat setiap permintaan dan respons, termasuk header, kode status, dan stempel waktu. Tingkat detail ini dapat membantu Anda mengidentifikasi masalah, menemukan error, dan memahami perilaku beban kerja inferensi Anda.
Untuk mengonfigurasi logging GKE Inference Gateway, aktifkan logging akses HTTP untuk setiap objek InferencePool
Anda.
Simpan manifes contoh berikut sebagai
logging-backend-policy.yaml
:apiVersion: networking.gke.io/v1 kind: GCPBackendPolicy metadata: name: logging-backend-policy namespace: NAMESPACE_NAME spec: default: logging: enabled: true sampleRate: 500000 targetRef: group: inference.networking.x-k8s.io kind: InferencePool name: INFERENCE_POOL_NAME
Ganti kode berikut:
NAMESPACE_NAME
: nama namespace tempatInferencePool
Anda di-deploy.INFERENCE_POOL_NAME
: namaInferencePool
.
Terapkan manifes contoh ke cluster Anda:
kubectl apply -f logging-backend-policy.yaml
Setelah Anda menerapkan manifes ini, GKE Inference Gateway akan mengaktifkan log akses HTTP untuk InferencePool
yang ditentukan. Anda dapat melihat log ini di Cloud Logging. Log menyertakan informasi mendetail tentang setiap permintaan dan
respons, seperti URL permintaan, header, kode status respons, dan latensi.
Konfigurasi penskalaan otomatis
Penskalaan otomatis menyesuaikan alokasi resource sebagai respons terhadap variasi beban,
mempertahankan performa dan efisiensi resource dengan menambahkan atau
menghapus Pod secara dinamis berdasarkan permintaan. Untuk GKE Inference Gateway, hal ini melibatkan
penskalaan otomatis horizontal Pod di setiap InferencePool
. Horizontal Pod Autoscaler (HPA) GKE
menskalakan otomatis Pod berdasarkan metrik server model
seperti KVCache Utilization
. Hal ini memastikan layanan inferensi menangani
beban kerja dan volume kueri yang berbeda sekaligus mengelola penggunaan resource secara efisien.
Untuk mengonfigurasi instance InferencePool
agar menskalakan secara otomatis berdasarkan metrik yang dihasilkan oleh GKE Inference Gateway, lakukan langkah-langkah berikut:
Deploy objek
PodMonitoring
di cluster untuk mengumpulkan metrik yang dihasilkan oleh GKE Inference Gateway. Untuk informasi selengkapnya, lihat Mengonfigurasi visibilitas.Deploy Adaptor Stackdriver Metrik Kustom untuk memberi HPA akses ke metrik:
Simpan manifes contoh berikut sebagai
adapter_new_resource_model.yaml
:apiVersion: v1 kind: Namespace metadata: name: custom-metrics --- apiVersion: v1 kind: ServiceAccount metadata: name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: custom-metrics-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader namespace: custom-metrics rules: - apiGroups: - "" resources: - pods - nodes - nodes/stats verbs: - get - list - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics-resource-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-resource-reader subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: apps/v1 kind: Deployment metadata: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter spec: replicas: 1 selector: matchLabels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter template: metadata: labels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter kubernetes.io/cluster-service: "true" spec: serviceAccountName: custom-metrics-stackdriver-adapter containers: - image: gcr.io/gke-release/custom-metrics-stackdriver-adapter:v0.15.2-gke.1 imagePullPolicy: Always name: pod-custom-metrics-stackdriver-adapter command: - /adapter - --use-new-resource-model=true - --fallback-for-container-metrics=true resources: limits: cpu: 250m memory: 200Mi requests: cpu: 250m memory: 200Mi --- apiVersion: v1 kind: Service metadata: labels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter kubernetes.io/cluster-service: 'true' kubernetes.io/name: Adapter name: custom-metrics-stackdriver-adapter namespace: custom-metrics spec: ports: - port: 443 protocol: TCP targetPort: 443 selector: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter type: ClusterIP --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.custom.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 100 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta1 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta2.custom.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 200 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta2 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.external.metrics.k8s.io spec: insecureSkipTLSVerify: true group: external.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 100 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta1 --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: external-metrics-reader rules: - apiGroups: - "external.metrics.k8s.io" resources: - "*" verbs: - list - get - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: external-metrics-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: external-metrics-reader subjects: - kind: ServiceAccount name: horizontal-pod-autoscaler namespace: kube-system
Terapkan manifes contoh ke cluster Anda:
kubectl apply -f adapter_new_resource_model.yaml
Untuk memberikan izin adaptor guna membaca metrik dari project, jalankan perintah berikut:
$ PROJECT_ID=PROJECT_ID $ PROJECT_NUMBER=$(gcloud projects describe PROJECT_ID --format="value(projectNumber)") $ gcloud projects add-iam-policy-binding projects/PROJECT_ID \ --role roles/monitoring.viewer \ --member=principal://iam.googleapis.com/projects/PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/subject/ns/custom-metrics/sa/custom-metrics-stackdriver-adapter
Ganti
PROJECT_ID
dengan Google Cloud project ID Anda.Untuk setiap
InferencePool
, deploy satu HPA yang mirip dengan berikut ini:apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: INFERENCE_POOL_NAME namespace: INFERENCE_POOL_NAMESPACE spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: INFERENCE_POOL_NAME minReplicas: MIN_REPLICAS maxReplicas: MAX_REPLICAS metrics: - type: External external: metric: name: prometheus.googleapis.com|inference_pool_average_kv_cache_utilization|gauge selector: matchLabels: metric.labels.name: INFERENCE_POOL_NAME resource.labels.cluster: CLUSTER_NAME resource.labels.namespace: INFERENCE_POOL_NAMESPACE target: type: AverageValue averageValue: TARGET_VALUE
Ganti kode berikut:
INFERENCE_POOL_NAME
: namaInferencePool
.INFERENCE_POOL_NAMESPACE
: namespaceInferencePool
.CLUSTER_NAME
: nama cluster.MIN_REPLICAS
: ketersediaan minimumInferencePool
(kapasitas dasar pengukuran). HPA mempertahankan jumlah replika ini saat penggunaan berada di bawah nilai minimum target HPA. Workload yang sangat tersedia harus menetapkannya ke nilai yang lebih tinggi dari1
untuk memastikan ketersediaan berkelanjutan selama gangguan Pod.MAX_REPLICAS
: nilai yang membatasi jumlah akselerator yang harus ditetapkan ke workload yang dihosting diInferencePool
. HPA tidak akan meningkatkan jumlah replika di luar nilai ini. Selama waktu traffic puncak, pantau jumlah replika untuk memastikan bahwa nilai kolomMAX_REPLICAS
memberikan headroom yang cukup sehingga beban kerja dapat diskalakan untuk mempertahankan karakteristik performa beban kerja yang dipilih.TARGET_VALUE
: nilai yang mewakili targetKV-Cache Utilization
yang dipilih per server model. Ini adalah angka antara 0-100 dan sangat bergantung pada server model, model, akselerator, dan karakteristik traffic masuk. Anda dapat menentukan nilai target ini secara eksperimental melalui pengujian beban dan memetakan grafik throughput versus latensi. Pilih kombinasi throughput dan latensi yang dipilih dari grafik, dan gunakan nilaiKV-Cache Utilization
yang sesuai sebagai target HPA. Anda harus menyesuaikan dan memantau nilai ini dengan cermat untuk mencapai hasil harga-performa yang dipilih. Anda dapat menggunakan Rekomendasi Inferens GKE untuk menentukan nilai ini secara otomatis.
Langkah berikutnya
- Baca tentang GKE Inference Gateway.
- Baca tentang men-deploy GKE Inference Gateway.
- Baca tentang operasi peluncuran GKE Inference Gateway.
- Baca tentang penayangan dengan GKE Inference Gateway.