Tutorial sobre reconhecimento óptico de caracteres (OCR)


Saiba como realizar o reconhecimento óptico de caracteres (OCR) no Google Cloud Platform. Neste tutorial, você verá como fazer upload de arquivos de imagem para o Cloud Storage, extrair texto das imagens usando o Cloud Vision e traduzir o texto usando a função API Cloud Translation e salve as traduções de volta no Cloud Storage. O Pub/Sub é usado para enfileirar várias tarefas e acionar o Cloud Run functions correto para executá-lo.

Para mais informações sobre como enviar uma solicitação de detecção de texto (OCR), consulte Detectar texto em imagens e Detectar escrita à mão em imagens ou Detectar texto em arquivos (PDF/TIFF) (em inglês).

Objetivos

  • Escrever e implantar várias funções orientadas a eventos.
  • Fazer upload de imagens para o Cloud Storage.
  • Extrair, traduzir e salvar o texto contido nas imagens enviadas.

Custos

Neste documento, você usará os seguintes componentes faturáveis do Google Cloud:

  • Cloud Run functions
  • Cloud Build
  • Pub/Sub
  • Artifact Registry
  • Eventarc
  • Cloud Run
  • Cloud Logging
  • Cloud Storage
  • Cloud Translation API
  • Cloud Vision

Para gerar uma estimativa de custo baseada na projeção de uso deste tutorial, use a calculadora de preços. Novos usuários do Google Cloud podem estar qualificados para uma avaliação gratuita.

Antes de começar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Run, Artifact Registry, Eventarc, Logging, Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Make sure that billing is enabled for your Google Cloud project.

  9. Enable the Cloud Functions, Cloud Build, Cloud Run, Artifact Registry, Eventarc, Logging, Pub/Sub, Cloud Storage, Cloud Translation, and Cloud Vision APIs.

    Enable the APIs

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init
  12. Se a gcloud CLI já estiver instalada, atualize-a executando o seguinte comando:

    gcloud components update
  13. Prepare seu ambiente de desenvolvimento.

Visualizar o fluxo de dados

O fluxo de dados no aplicativo do tutorial do OCR envolve vários passos:

  1. É feito o upload no Cloud Storage de uma imagem com texto em qualquer idioma.
  2. Uma função do Cloud Run é acionada, que usa a API Vision para extrair o texto e detectar o idioma de origem.
  3. O texto é colocado na fila para tradução publicando uma mensagem em um tópico do Pub/Sub. Uma tradução é enfileirada para cada idioma de destino diferente do idioma de origem.
  4. Se um idioma de destino corresponder ao idioma de origem, a fila de tradução será ignorada e o texto será enviado para a fila de resultados, que é um tópico do Pub/Sub diferente.
  5. Uma função do Cloud Run usa a API Cloud Translation para traduzir o texto na fila de tradução. A tradução gerada é enviada para a fila de resultados.
  6. Outra função do Cloud Run salva o texto traduzido da fila de resultados no Cloud Storage.
  7. Os resultados são encontrados no Cloud Storage como arquivos para cada tradução.

Isto pode ajudar a visualizar os passos:

Preparar o aplicativo

  1. Crie um bucket do Cloud Storage para fazer upload de imagens, em que YOUR_IMAGE_BUCKET_NAME é um nome de bucket globalmente exclusivo:

    gcloud storage buckets create gs://YOUR_IMAGE_BUCKET_NAME
  2. Crie um bucket do Cloud Storage para salvar traduções de texto, em que YOUR_RESULT_BUCKET_NAME é um nome de bucket globalmente exclusivo:

    gcloud storage buckets create gs://YOUR_RESULT_BUCKET_NAME
  3. Crie um tópico do Pub/Sub onde as solicitações de tradução serão publicadas, em que YOUR_TRANSLATE_TOPIC_NAME é o nome do tópico da solicitação de tradução:

    gcloud pubsub topics create YOUR_TRANSLATE_TOPIC_NAME
  4. Crie um tópico do Pub/Sub onde os resultados da tradução concluída serão publicados, em que YOUR_RESULT_TOPIC_NAME é o nome do tópico de resultados da tradução:

    gcloud pubsub topics create YOUR_RESULT_TOPIC_NAME
  5. Clone o repositório do app de amostra na máquina local:

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

    Go

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    Outra alternativa é fazer o download da amostra como um arquivo ZIP e extraí-lo.

  6. Mude para o diretório que contém o código de amostra das funções do Cloud Run:

    Node.js

    cd nodejs-docs-samples/functions/v2/ocr/app/

    Python

    cd python-docs-samples/functions/v2/ocr/

    Go

    cd golang-samples/functions/functionsv2/ocr/app/

    Java

    cd java-docs-samples/functions/v2/ocr/ocr-process-image/

Entenda o código

Esta seção descreve as dependências e funções que compõem o exemplo de OCR.

Importar dependências

O aplicativo importa várias dependências para se comunicar com os serviços do Google Cloud Platform:

Node.js

// Get a reference to the Pub/Sub component
const {PubSub} = require('@google-cloud/pubsub');
const pubsub = new PubSub();

// Get a reference to the Cloud Storage component
const {Storage} = require('@google-cloud/storage');
const storage = new Storage();

// Get a reference to the Cloud Vision API component
const Vision = require('@google-cloud/vision');
const vision = new Vision.ImageAnnotatorClient();

// Get a reference to the Translate API component
const {Translate} = require('@google-cloud/translate').v2;
const translate = new Translate();

const functions = require('@google-cloud/functions-framework');

Python

import base64
import json
import os

from cloudevents.http import CloudEvent

import functions_framework

from google.cloud import pubsub_v1
from google.cloud import storage
from google.cloud import translate_v2 as translate
from google.cloud import vision


vision_client = vision.ImageAnnotatorClient()
translate_client = translate.Client()
publisher = pubsub_v1.PublisherClient()
storage_client = storage.Client()

project_id = os.environ.get("GCP_PROJECT")

Go


// Package ocr contains Go samples for creating OCR
// (Optical Character Recognition) Cloud functions.
package ocr

import (
	"context"
	"fmt"
	"os"
	"strings"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/storage"
	"cloud.google.com/go/translate"
	vision "cloud.google.com/go/vision/apiv1"
	"golang.org/x/text/language"
)

type ocrMessage struct {
	Text     string       `json:"text"`
	FileName string       `json:"fileName"`
	Lang     language.Tag `json:"lang"`
	SrcLang  language.Tag `json:"srcLang"`
}

// Eventarc sends a MessagePublishedData object.
// See the documentation for additional fields and more details:
// https://cloud.google.com/eventarc/docs/cloudevents#pubsub_1
type MessagePublishedData struct {
	Message PubSubMessage
}

// PubSubMessage is the payload of a Pub/Sub event.
// See the documentation for additional fields and more details:
// https://cloud.google.com/pubsub/docs/reference/rest/v1/PubsubMessage
type PubSubMessage struct {
	Data []byte `json:"data"`
}

var (
	visionClient    *vision.ImageAnnotatorClient
	translateClient *translate.Client
	pubsubClient    *pubsub.Client
	storageClient   *storage.Client

	projectID      string
	resultBucket   string
	resultTopic    string
	toLang         []string
	translateTopic string
)

func setup(ctx context.Context) error {
	projectID = os.Getenv("GCP_PROJECT")
	resultBucket = os.Getenv("RESULT_BUCKET")
	resultTopic = os.Getenv("RESULT_TOPIC")
	toLang = strings.Split(os.Getenv("TO_LANG"), ",")
	translateTopic = os.Getenv("TRANSLATE_TOPIC")

	var err error // Prevent shadowing clients with :=.

	if visionClient == nil {
		visionClient, err = vision.NewImageAnnotatorClient(ctx)
		if err != nil {
			return fmt.Errorf("vision.NewImageAnnotatorClient: %w", err)
		}
	}

	if translateClient == nil {
		translateClient, err = translate.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if pubsubClient == nil {
		pubsubClient, err = pubsub.NewClient(ctx, projectID)
		if err != nil {
			return fmt.Errorf("translate.NewClient: %w", err)
		}
	}

	if storageClient == nil {
		storageClient, err = storage.NewClient(ctx)
		if err != nil {
			return fmt.Errorf("storage.NewClient: %w", err)
		}
	}
	return nil
}

Java

public class OcrProcessImage implements CloudEventsFunction {
  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = System.getenv("GCP_PROJECT");
  private static final String TRANSLATE_TOPIC_NAME = System.getenv("TRANSLATE_TOPIC");
  private static final String[] TO_LANGS = System.getenv("TO_LANG") == null ? new String[] { "es" }
      : System.getenv("TO_LANG").split(",");

  private static final Logger logger = Logger.getLogger(OcrProcessImage.class.getName());
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();
  private Publisher publisher;

  public OcrProcessImage() throws IOException {
    publisher = Publisher.newBuilder(ProjectTopicName.of(PROJECT_ID, TRANSLATE_TOPIC_NAME)).build();
  }

}

Processar imagens

A função a seguir lê um arquivo de imagem enviado do Cloud Storage e chama uma função para detectar se a imagem contém texto:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a file is uploaded to the Cloud Storage bucket you created
 * for uploading images.
 *
 * @param {object} cloudEvent A CloudEvent containing the Cloud Storage File object.
 * https://cloud.google.com/storage/docs/json_api/v1/objects
 */
functions.cloudEvent('processImage', async cloudEvent => {
  const {bucket, name} = cloudEvent.data;

  if (!bucket) {
    throw new Error(
      'Bucket not provided. Make sure you have a "bucket" property in your request'
    );
  }
  if (!name) {
    throw new Error(
      'Filename not provided. Make sure you have a "name" property in your request'
    );
  }

  await detectText(bucket, name);
  console.log(`File ${name} processed.`);
});

Python

@functions_framework.cloud_event
def process_image(cloud_event: CloudEvent) -> None:
    """Cloud Function triggered by Cloud Storage when a file is changed.

    Gets the names of the newly created object and its bucket then calls
    detect_text to find text in that image.

    detect_text finishes by sending PubSub messages requesting another service
    then complete processing those texts by translating them and saving the
    translations.
    """

    # Check that the received event is of the expected type, return error if not
    expected_type = "google.cloud.storage.object.v1.finalized"
    received_type = cloud_event["type"]
    if received_type != expected_type:
        raise ValueError(f"Expected {expected_type} but received {received_type}")

    # Extract the bucket and file names of the uploaded image for processing
    data = cloud_event.data
    bucket = data["bucket"]
    filename = data["name"]

    # Process the information in the new image
    detect_text(bucket, filename)

    print(f"File {filename} processed.")

Go


package ocr

import (
	"context"
	"fmt"
	"log"

	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
	"github.com/cloudevents/sdk-go/v2/event"
	"github.com/googleapis/google-cloudevents-go/cloud/storagedata"
	"google.golang.org/protobuf/encoding/protojson"
)

func init() {
	functions.CloudEvent("process-image", ProcessImage)
}

// ProcessImage is executed when a file is uploaded to the Cloud Storage bucket you
// created for uploading images. It runs detectText, which processes the image for text.
func ProcessImage(ctx context.Context, cloudevent event.Event) error {
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}

	var data storagedata.StorageObjectData
	if err := protojson.Unmarshal(cloudevent.Data(), &data); err != nil {
		return fmt.Errorf("protojson.Unmarshal: Failed to parse CloudEvent data: %w", err)
	}
	if data.GetBucket() == "" {
		return fmt.Errorf("empty file.Bucket")
	}
	if data.GetName() == "" {
		return fmt.Errorf("empty file.Name")
	}
	if err := detectText(ctx, data.GetBucket(), data.GetName()); err != nil {
		return fmt.Errorf("detectText: %w", err)
	}
	log.Printf("File %s processed.", data.GetName())
	return nil
}

Java


import com.google.cloud.functions.CloudEventsFunction;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.DetectLanguageRequest;
import com.google.cloud.translate.v3.DetectLanguageResponse;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.events.cloud.storage.v1.StorageObjectData;
import com.google.protobuf.ByteString;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.util.JsonFormat;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import io.cloudevents.CloudEvent;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

  @Override
  public void accept(CloudEvent event) throws InvalidProtocolBufferException {
    // Unmarshal data from CloudEvent
    String cloudEventData = new String(event.getData().toBytes(), StandardCharsets.UTF_8);
    StorageObjectData.Builder builder = StorageObjectData.newBuilder();
    JsonFormat.parser().merge(cloudEventData, builder);
    StorageObjectData gcsEvent = builder.build();

    String bucket = gcsEvent.getBucket();
    if (bucket.isEmpty()) {
      throw new IllegalArgumentException("Missing bucket parameter");
    }
    String filename = gcsEvent.getName();
    if (filename.isEmpty()) {
      throw new IllegalArgumentException("Missing name parameter");
    }

    detectText(bucket, filename);
  }
}

A função a seguir extrai o texto da imagem usando a API Vision e enfileira o texto para tradução:

Node.js

/**
 * Detects the text in an image using the Google Vision API.
 *
 * @param {string} bucketName Cloud Storage bucket name.
 * @param {string} filename Cloud Storage file name.
 * @returns {Promise}
 */
const detectText = async (bucketName, filename) => {
  console.log(`Looking for text in image ${filename}`);
  const [textDetections] = await vision.textDetection(
    `gs://${bucketName}/${filename}`
  );
  const [annotation] = textDetections.textAnnotations;
  const text = annotation ? annotation.description.trim() : '';
  console.log('Extracted text from image:', text);

  let [translateDetection] = await translate.detect(text);
  if (Array.isArray(translateDetection)) {
    [translateDetection] = translateDetection;
  }
  console.log(
    `Detected language "${translateDetection.language}" for ${filename}`
  );

  // Submit a message to the bus for each language we're going to translate to
  const TO_LANGS = process.env.TO_LANG.split(',');
  const topicName = process.env.TRANSLATE_TOPIC;

  const tasks = TO_LANGS.map(lang => {
    const messageData = {
      text: text,
      filename: filename,
      lang: lang,
    };

    // Helper function that publishes translation result to a Pub/Sub topic
    // For more information on publishing Pub/Sub messages, see this page:
    //   https://cloud.google.com/pubsub/docs/publisher
    return publishResult(topicName, messageData);
  });

  return Promise.all(tasks);
};

Python

def detect_text(bucket: str, filename: str) -> None:
    """Extract the text from an image uploaded to Cloud Storage, then
    publish messages requesting subscribing services translate the text
    to each target language and save the result.

    Args:
        bucket: name of GCS bucket in which the file is stored.
        filename: name of the file to be read.
    """

    print(f"Looking for text in image {filename}")

    # Use the Vision API to extract text from the image
    image = vision.Image(
        source=vision.ImageSource(gcs_image_uri=f"gs://{bucket}/{filename}")
    )
    text_detection_response = vision_client.text_detection(image=image)
    annotations = text_detection_response.text_annotations

    if annotations:
        text = annotations[0].description
    else:
        text = ""
    print(f"Extracted text {text} from image ({len(text)} chars).")

    detect_language_response = translate_client.detect_language(text)
    src_lang = detect_language_response["language"]
    print(f"Detected language {src_lang} for text {text}.")

    # Submit a message to the bus for each target language
    futures = []  # Asynchronous publish request statuses

    to_langs = os.environ.get("TO_LANG", "").split(",")
    for target_lang in to_langs:
        topic_name = os.environ.get("TRANSLATE_TOPIC")
        if src_lang == target_lang or src_lang == "und":
            topic_name = os.environ.get("RESULT_TOPIC")

        message = {
            "text": text,
            "filename": filename,
            "lang": target_lang,
            "src_lang": src_lang,
        }

        message_data = json.dumps(message).encode("utf-8")
        topic_path = publisher.topic_path(project_id, topic_name)
        future = publisher.publish(topic_path, data=message_data)
        futures.append(future)

    # Wait for each publish request to be completed before exiting
    for future in futures:
        future.result()

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/vision/v2/apiv1/visionpb"
	"golang.org/x/text/language"
)

// detectText detects the text in an image using the Google Vision API.
func detectText(ctx context.Context, bucketName, fileName string) error {
	log.Printf("Looking for text in image %v", fileName)
	maxResults := 1
	image := &visionpb.Image{
		Source: &visionpb.ImageSource{
			GcsImageUri: fmt.Sprintf("gs://%s/%s", bucketName, fileName),
		},
	}
	annotations, err := visionClient.DetectTexts(ctx, image, &visionpb.ImageContext{}, maxResults)
	if err != nil {
		return fmt.Errorf("DetectTexts: %w", err)
	}
	text := ""
	if len(annotations) > 0 {
		text = annotations[0].Description
	}
	if len(annotations) == 0 || len(text) == 0 {
		log.Printf("No text detected in image %q. Returning early.", fileName)
		return nil
	}
	log.Printf("Extracted text %q from image (%d chars).", text, len(text))

	detectResponse, err := translateClient.DetectLanguage(ctx, []string{text})
	if err != nil {
		return fmt.Errorf("DetectLanguage: %w", err)
	}
	if len(detectResponse) == 0 || len(detectResponse[0]) == 0 {
		return fmt.Errorf("DetectLanguage gave empty response")
	}
	srcLang := detectResponse[0][0].Language.String()
	log.Printf("Detected language %q for text %q.", srcLang, text)

	// Submit a message to the bus for each target language
	for _, targetLang := range toLang {
		topicName := translateTopic
		if srcLang == targetLang || srcLang == "und" { // detection returns "und" for undefined language
			topicName = resultTopic
		}
		targetTag, err := language.Parse(targetLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		srcTag, err := language.Parse(srcLang)
		if err != nil {
			return fmt.Errorf("language.Parse: %w", err)
		}
		message, err := json.Marshal(ocrMessage{
			Text:     text,
			FileName: fileName,
			Lang:     targetTag,
			SrcLang:  srcTag,
		})
		if err != nil {
			return fmt.Errorf("json.Marshal: %w", err)
		}
		topic := pubsubClient.Topic(topicName)
		ok, err := topic.Exists(ctx)
		if err != nil {
			return fmt.Errorf("Exists: %w", err)
		}
		if !ok {
			topic, err = pubsubClient.CreateTopic(ctx, topicName)
			if err != nil {
				return fmt.Errorf("CreateTopic: %w", err)
			}
		}
		msg := &pubsub.Message{
			Data: []byte(message),
		}
		log.Printf("Sending pubsub message: %s", message)
		if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
			return fmt.Errorf("Get: %w", err)
		}
	}
	return nil
}

Java

private void detectText(String bucket, String filename) {
  logger.info("Looking for text in image " + filename);

  List<AnnotateImageRequest> visionRequests = new ArrayList<>();
  String gcsPath = String.format("gs://%s/%s", bucket, filename);

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  Feature textFeature = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
  AnnotateImageRequest visionRequest = AnnotateImageRequest.newBuilder()
      .addFeatures(textFeature).setImage(img)
      .build();
  visionRequests.add(visionRequest);

  // Detect text in an image using the Cloud Vision API
  AnnotateImageResponse visionResponse;
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    visionResponse = client.batchAnnotateImages(visionRequests).getResponses(0);
    if (visionResponse == null || !visionResponse.hasFullTextAnnotation()) {
      logger.info(String.format("Image %s contains no text", filename));
      return;
    }

    if (visionResponse.hasError()) {
      // Log error
      logger.log(
          Level.SEVERE, "Error in vision API call: " + visionResponse.getError().getMessage());
      return;
    }
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a Cloud Function)
    logger.log(Level.SEVERE, "Error detecting text: " + e.getMessage(), e);
    return;
  }

  String text = visionResponse.getFullTextAnnotation().getText();
  logger.info("Extracted text from image: " + text);

  // Detect language using the Cloud Translation API
  DetectLanguageRequest languageRequest = DetectLanguageRequest.newBuilder()
      .setParent(LOCATION_NAME)
      .setMimeType("text/plain")
      .setContent(text)
      .build();
  DetectLanguageResponse languageResponse;
  try (TranslationServiceClient client = TranslationServiceClient.create()) {
    languageResponse = client.detectLanguage(languageRequest);
  } catch (IOException e) {
    // Log error (since IOException cannot be thrown by a function)
    logger.log(Level.SEVERE, "Error detecting language: " + e.getMessage(), e);
    return;
  }

  if (languageResponse.getLanguagesCount() == 0) {
    logger.info("No languages were detected for text: " + text);
    return;
  }

  String languageCode = languageResponse.getLanguages(0).getLanguageCode();
  logger.info(String.format("Detected language %s for file %s", languageCode, filename));

  // Send a Pub/Sub translation request for every language we're going to
  // translate to
  for (String targetLanguage : TO_LANGS) {
    logger.info("Sending translation request for language " + targetLanguage);
    OcrTranslateApiMessage message = new OcrTranslateApiMessage(text, filename, targetLanguage);
    ByteString byteStr = ByteString.copyFrom(message.toPubsubData());
    PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
    try {
      publisher.publish(pubsubApiMessage).get();
    } catch (InterruptedException | ExecutionException e) {
      // Log error
      logger.log(Level.SEVERE, "Error publishing translation request: " + e.getMessage(), e);
      return;
    }
  }
}

Traduzir texto

A função a seguir traduz o texto extraído e o enfileira para ser salvo no Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the TRANSLATE_TOPIC environment variable. The function
 * translates text using the Google Translate API.
 *
 * @param {object} cloudEvent The CloudEvent containing the Pub/Sub Message object
 * https://cloud.google.com/storage/docs/json_api/v1/objects
 */
functions.cloudEvent('translateText', async cloudEvent => {
  const pubsubData = cloudEvent.data;
  const jsonStr = Buffer.from(pubsubData.message, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Translating text into ${lang}`);
  const [translation] = await translate.translate(text, lang);

  console.log('Translated text:', translation);

  const messageData = {
    text: translation,
    filename: filename,
    lang: lang,
  };

  await publishResult(process.env.RESULT_TOPIC, messageData);
  console.log(`Text translated to ${lang}`);
});

Python

@functions_framework.cloud_event
def translate_text(cloud_event: CloudEvent) -> None:
    """Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Translates the text in the message from the specified source language
    to the requested target language, then sends a message requesting another
    service save the result.
    """

    # Check that the received event is of the expected type, return error if not
    expected_type = "google.cloud.pubsub.topic.v1.messagePublished"
    received_type = cloud_event["type"]
    if received_type != expected_type:
        raise ValueError(f"Expected {expected_type} but received {received_type}")

    # Extract the message body, expected to be a JSON representation of a
    # dictionary, and extract the fields from that dictionary.
    data = cloud_event.data["message"]["data"]
    try:
        message_data = base64.b64decode(data)
        message = json.loads(message_data)

        text = message["text"]
        filename = message["filename"]
        target_lang = message["lang"]
        src_lang = message["src_lang"]
    except Exception as e:
        raise ValueError(f"Missing or malformed PubSub message {data}: {e}.")

    # Translate the text and publish a message with the translation
    print(f"Translating text into {target_lang}.")

    translated_text = translate_client.translate(
        text, target_language=target_lang, source_language=src_lang
    )

    topic_name = os.environ["RESULT_TOPIC"]
    message = {
        "text": translated_text["translatedText"],
        "filename": filename,
        "lang": target_lang,
    }
    message_data = json.dumps(message).encode("utf-8")
    topic_path = publisher.topic_path(project_id, topic_name)
    future = publisher.publish(topic_path, data=message_data)
    future.result()  # Wait for operation to complete

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"cloud.google.com/go/pubsub"
	"cloud.google.com/go/translate"
	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
	"github.com/cloudevents/sdk-go/v2/event"
)

func init() {
	functions.CloudEvent("translate-text", TranslateText)
}

// TranslateText is executed when a message is published to the Cloud Pub/Sub
// topic specified by the TRANSLATE_TOPIC environment variable, and translates
// the text using the Google Translate API.
func TranslateText(ctx context.Context, cloudevent event.Event) error {
	var event MessagePublishedData
	if err := setup(ctx); err != nil {
		return fmt.Errorf("setup: %w", err)
	}
	if err := cloudevent.DataAs(&event); err != nil {
		return fmt.Errorf("Failed to parse CloudEvent data: %w", err)
	}
	if event.Message.Data == nil {
		log.Printf("event: %s", event)
		return fmt.Errorf("empty data")
	}
	var message ocrMessage
	if err := json.Unmarshal(event.Message.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}

	log.Printf("Translating text into %s.", message.Lang.String())
	opts := translate.Options{
		Source: message.SrcLang,
	}
	translateResponse, err := translateClient.Translate(ctx, []string{message.Text}, message.Lang, &opts)
	if err != nil {
		return fmt.Errorf("Translate: %w", err)
	}
	if len(translateResponse) == 0 {
		return fmt.Errorf("Empty Translate response")
	}
	translatedText := translateResponse[0]

	messageData, err := json.Marshal(ocrMessage{
		Text:     translatedText.Text,
		FileName: message.FileName,
		Lang:     message.Lang,
		SrcLang:  message.SrcLang,
	})
	if err != nil {
		return fmt.Errorf("json.Marshal: %w", err)
	}

	topic := pubsubClient.Topic(resultTopic)
	ok, err := topic.Exists(ctx)
	if err != nil {
		return fmt.Errorf("Exists: %w", err)
	}
	if !ok {
		topic, err = pubsubClient.CreateTopic(ctx, resultTopic)
		if err != nil {
			return fmt.Errorf("CreateTopic: %w", err)
		}
	}
	msg := &pubsub.Message{
		Data: messageData,
	}
	if _, err = topic.Publish(ctx, msg).Get(ctx); err != nil {
		return fmt.Errorf("Get: %w", err)
	}
	log.Printf("Sent translation: %q", translatedText.Text)
	return nil
}

Java


import com.google.cloud.functions.CloudEventsFunction;
import com.google.cloud.pubsub.v1.Publisher;
import com.google.cloud.translate.v3.LocationName;
import com.google.cloud.translate.v3.TranslateTextRequest;
import com.google.cloud.translate.v3.TranslateTextResponse;
import com.google.cloud.translate.v3.TranslationServiceClient;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonDeserializationContext;
import com.google.gson.JsonDeserializer;
import com.google.gson.JsonElement;
import com.google.gson.JsonParseException;
import com.google.protobuf.ByteString;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import functions.eventpojos.MessagePublishedData;
import io.cloudevents.CloudEvent;
import java.io.IOException;
import java.lang.reflect.Type;
import java.nio.charset.StandardCharsets;
import java.time.OffsetDateTime;
import java.util.concurrent.ExecutionException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class OcrTranslateText implements CloudEventsFunction {
  private static final Logger logger = Logger.getLogger(OcrTranslateText.class.getName());

  // TODO<developer> set these environment variables
  private static final String PROJECT_ID = getenv("GCP_PROJECT");
  private static final String RESULTS_TOPIC_NAME = getenv("RESULT_TOPIC");
  private static final String LOCATION_NAME = LocationName.of(PROJECT_ID, "global").toString();

  private Publisher publisher;

  public OcrTranslateText() throws IOException {
    publisher = Publisher.newBuilder(ProjectTopicName.of(PROJECT_ID, RESULTS_TOPIC_NAME)).build();
  }

  // Create custom deserializer to handle timestamps in event data
  class DateDeserializer implements JsonDeserializer<OffsetDateTime> {
    @Override
    public OffsetDateTime deserialize(
        JsonElement json, Type typeOfT, JsonDeserializationContext context)
        throws JsonParseException {
      return OffsetDateTime.parse(json.getAsString());
    }
  }

  Gson gson =
      new GsonBuilder().registerTypeAdapter(OffsetDateTime.class, new DateDeserializer()).create();

  @Override
  public void accept(CloudEvent event) throws InterruptedException, IOException {
    MessagePublishedData data =
        gson.fromJson(
            new String(event.getData().toBytes(), StandardCharsets.UTF_8),
            MessagePublishedData.class);
    OcrTranslateApiMessage ocrMessage =
        OcrTranslateApiMessage.fromPubsubData(
            data.getMessage().getData().getBytes(StandardCharsets.UTF_8));

    String targetLang = ocrMessage.getLang();
    logger.info("Translating text into " + targetLang);

    // Translate text to target language
    String text = ocrMessage.getText();
    TranslateTextRequest request =
        TranslateTextRequest.newBuilder()
            .setParent(LOCATION_NAME)
            .setMimeType("text/plain")
            .setTargetLanguageCode(targetLang)
            .addContents(text)
            .build();

    TranslateTextResponse response;
    try (TranslationServiceClient client = TranslationServiceClient.create()) {
      response = client.translateText(request);
    } catch (IOException e) {
      // Log error (since IOException cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error translating text: " + e.getMessage(), e);
      return;
    }
    if (response.getTranslationsCount() == 0) {
      return;
    }

    String translatedText = response.getTranslations(0).getTranslatedText();
    logger.info("Translated text: " + translatedText);

    // Send translated text to (subsequent) Pub/Sub topic
    String filename = ocrMessage.getFilename();
    OcrTranslateApiMessage translateMessage =
        new OcrTranslateApiMessage(translatedText, filename, targetLang);
    try {
      ByteString byteStr = ByteString.copyFrom(translateMessage.toPubsubData());
      PubsubMessage pubsubApiMessage = PubsubMessage.newBuilder().setData(byteStr).build();
      publisher.publish(pubsubApiMessage).get();
      logger.info("Text translated to " + targetLang);
    } catch (InterruptedException | ExecutionException e) {
      // Log error (since these exception types cannot be thrown by a function)
      logger.log(Level.SEVERE, "Error publishing translation save request: " + e.getMessage(), e);
    }
  }

  // Avoid ungraceful deployment failures due to unset environment variables.
  // If you get this warning you should redeploy with the variable set.
  private static String getenv(String name) {
    String value = System.getenv(name);
    if (value == null) {
      logger.warning("Environment variable " + name + " was not set");
      value = "MISSING";
    }
    return value;
  }
}

Salvar as traduções

Por fim, a função a seguir recebe o texto traduzido e o salva no Cloud Storage:

Node.js

/**
 * This function is exported by index.js, and is executed when
 * a message is published to the Cloud Pub/Sub topic specified
 * by the RESULT_TOPIC environment variable. The function saves
 * the data packet to a file in GCS.
 *
 * @param {object} cloudEvent The CloudEvent containing the Pub/Sub Message object.
 * https://cloud.google.com/storage/docs/json_api/v1/objects
 */
functions.cloudEvent('saveResult', async cloudEvent => {
  const pubsubData = cloudEvent.data;
  const jsonStr = Buffer.from(pubsubData.message, 'base64').toString();
  const {text, filename, lang} = JSON.parse(jsonStr);

  if (!text) {
    throw new Error(
      'Text not provided. Make sure you have a "text" property in your request'
    );
  }
  if (!filename) {
    throw new Error(
      'Filename not provided. Make sure you have a "filename" property in your request'
    );
  }
  if (!lang) {
    throw new Error(
      'Language not provided. Make sure you have a "lang" property in your request'
    );
  }

  console.log(`Received request to save file ${filename}`);

  const bucketName = process.env.RESULT_BUCKET;
  const newFilename = renameImageForSave(filename, lang);
  const file = storage.bucket(bucketName).file(newFilename);

  console.log(`Saving result to ${newFilename} in bucket ${bucketName}`);

  await file.save(text);
  console.log('File saved.');
});

Python

@functions_framework.cloud_event
def save_result(cloud_event: CloudEvent) -> None:
    """Cloud Function triggered by PubSub when a message is received from
    a subscription.

    Saves translated text to a Cloud Storage object as requested.
    """
    # Check that the received event is of the expected type, return error if not
    expected_type = "google.cloud.pubsub.topic.v1.messagePublished"
    received_type = cloud_event["type"]
    if received_type != expected_type:
        raise ValueError(f"Expected {expected_type} but received {received_type}")

    # Extract the message body, expected to be a JSON representation of a
    # dictionary, and extract the fields from that dictionary.
    data = cloud_event.data["message"]["data"]
    try:
        message_data = base64.b64decode(data)
        message = json.loads(message_data)

        text = message["text"]
        filename = message["filename"]
        lang = message["lang"]
    except Exception as e:
        raise ValueError(f"Missing or malformed PubSub message {data}: {e}.")

    print(f"Received request to save file {filename}.")

    # Save the translation in RESULT_BUCKET
    bucket_name = os.environ["RESULT_BUCKET"]
    result_filename = f"{filename}_{lang}.txt"
    bucket = storage_client.get_bucket(bucket_name)
    blob = bucket.blob(result_filename)

    print(f"Saving result to {result_filename} in bucket {bucket_name}.")

    blob.upload_from_string(text)

    print("File saved.")

Go


package ocr

import (
	"context"
	"encoding/json"
	"fmt"
	"log"

	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
	"github.com/cloudevents/sdk-go/v2/event"
)

func init() {
	functions.CloudEvent("save-result", SaveResult)
}

// SaveResult is executed when a message is published to the Cloud Pub/Sub topic
// specified by the RESULT_TOPIC environment vairable, and saves the data packet
// to a file in GCS.
func SaveResult(ctx context.Context, cloudevent event.Event) error {
	var event MessagePublishedData
	if err := setup(ctx); err != nil {
		return fmt.Errorf("ProcessImage: %w", err)
	}
	if err := cloudevent.DataAs(&event); err != nil {
		return fmt.Errorf("Failed to parse CloudEvent data: %w", err)
	}
	var message ocrMessage
	if event.Message.Data == nil {
		return fmt.Errorf("Empty data")
	}
	if err := json.Unmarshal(event.Message.Data, &message); err != nil {
		return fmt.Errorf("json.Unmarshal: %w", err)
	}
	log.Printf("Received request to save file %q.", message.FileName)

	resultFilename := fmt.Sprintf("%s_%s.txt", message.FileName, message.Lang)
	bucket := storageClient.Bucket(resultBucket)

	log.Printf("Saving result to %q in bucket %q.", resultFilename, resultBucket)

	w := bucket.Object(resultFilename).NewWriter(ctx)
	defer w.Close()
	fmt.Fprint(w, message.Text)

	log.Printf("File saved.")
	return nil
}

Java


import com.google.cloud.functions.CloudEventsFunction;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.BlobInfo;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import com.google.gson.Gson;
import com.google.gson.GsonBuilder;
import com.google.gson.JsonDeserializationContext;
import com.google.gson.JsonDeserializer;
import com.google.gson.JsonElement;
import com.google.gson.JsonParseException;
import functions.eventpojos.MessagePublishedData;
import io.cloudevents.CloudEvent;
import java.lang.reflect.Type;
import java.nio.charset.StandardCharsets;
import java.time.OffsetDateTime;
import java.util.logging.Logger;

public class OcrSaveResult implements CloudEventsFunction {
  // TODO<developer> set this environment variable
  private static final String RESULT_BUCKET = System.getenv("RESULT_BUCKET");

  private static final Storage STORAGE = StorageOptions.getDefaultInstance().getService();
  private static final Logger logger = Logger.getLogger(OcrSaveResult.class.getName());

  // Configure Gson with custom deserializer to handle timestamps in event data
  class DateDeserializer implements JsonDeserializer<OffsetDateTime> {
    @Override
    public OffsetDateTime deserialize(
        JsonElement json, Type typeOfT, JsonDeserializationContext context)
        throws JsonParseException {
      return OffsetDateTime.parse(json.getAsString());
    }
  }

  Gson gson =
      new GsonBuilder().registerTypeAdapter(OffsetDateTime.class, new DateDeserializer()).create();

  @Override
  public void accept(CloudEvent event) {
    // Unmarshal data from CloudEvent
    MessagePublishedData data =
        gson.fromJson(
            new String(event.getData().toBytes(), StandardCharsets.UTF_8),
            MessagePublishedData.class);
    OcrTranslateApiMessage ocrMessage =
        OcrTranslateApiMessage.fromPubsubData(
            data.getMessage().getData().getBytes(StandardCharsets.UTF_8));

    logger.info("Received request to save file " + ocrMessage.getFilename());

    String newFileName =
        String.format("%s_to_%s.txt", ocrMessage.getFilename(), ocrMessage.getLang());

    // Save file to RESULT_BUCKET with name newFileName
    logger.info(String.format("Saving result to %s in bucket %s", newFileName, RESULT_BUCKET));
    BlobInfo blobInfo = BlobInfo.newBuilder(BlobId.of(RESULT_BUCKET, newFileName)).build();
    STORAGE.create(blobInfo, ocrMessage.getText().getBytes(StandardCharsets.UTF_8));
    logger.info("File saved");
  }
}

Implantar as funções.

  1. Para implantar a função de processamento de imagens com um gatilho do Cloud Storage, execute o seguinte comando no diretório que contém o código de amostra (ou, no caso de Java, o arquivo pom.xml):

    Node.js

    gcloud functions deploy ocr-extract \
    --gen2 \
    --runtime=nodejs20 \
    --region=REGION \
    --source=. \
    --entry-point=processImage \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Node.js compatível a fim de executar a função.

    Python

    gcloud functions deploy ocr-extract \
    --gen2 \
    --runtime=python312 \
    --region=REGION \
    --source=. \
    --entry-point=process_image \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Python a fim de executar a função.

    Go

    gcloud functions deploy ocr-extract \
    --gen2 \
    --runtime=go121 \
    --region=REGION \
    --source=. \
    --entry-point=process-image \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Go compatível a fim de executar a função.

    Java

    gcloud functions deploy ocr-extract \
    --gen2 \
    --runtime=java17 \
    --region=REGION \
    --source=. \
    --entry-point=functions.OcrProcessImage \
    --memory=512MB \
    --trigger-bucket YOUR_IMAGE_BUCKET_NAME \
    --set-env-vars "^:^GCP_PROJECT=YOUR_GCP_PROJECT_ID:TRANSLATE_TOPIC=YOUR_TRANSLATE_TOPIC_NAME:RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME:TO_LANG=es,en,fr,ja"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Java a fim de executar a função.

    Substitua:

    • REGION: o nome da região do Google Cloud em que você quer implantar a função (por exemplo, us-west1).
    • YOUR_IMAGE_BUCKET_NAME: o nome do bucket do Cloud Storage em que você fará upload das imagens. Durante a implantação as funções do Cloud Run, especifiquem apenas o nome do bucket, sem o gs:// inicial, por exemplo, --trigger-event-filters="bucket=my-bucket".
  2. Para implantar a função de tradução de texto com um gatilho do Pub/Sub, execute o seguinte comando no diretório que contém o exemplo de código (ou, no caso de Java, o arquivo pom.xml):

    Node.js

    gcloud functions deploy ocr-translate \
    --gen2 \
    --runtime=nodejs20 \
    --region=REGION \
    --source=. \
    --entry-point=translateText \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Node.js compatível a fim de executar a função.

    Python

    gcloud functions deploy ocr-translate \
    --gen2 \
    --runtime=python312 \
    --region=REGION \
    --source=. \
    --entry-point=translate_text \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Python a fim de executar a função.

    Go

    gcloud functions deploy ocr-translate \
    --gen2 \
    --runtime=go121 \
    --region=REGION \
    --source=. \
    --entry-point=translate-text \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Go compatível a fim de executar a função.

    Java

    gcloud functions deploy ocr-translate \
    --gen2 \
    --runtime=java17 \
    --region=REGION \
    --source=. \
    --entry-point=functions.OcrTranslateText \
    --memory=512MB \
    --trigger-topic YOUR_TRANSLATE_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_TOPIC=YOUR_RESULT_TOPIC_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Java a fim de executar a função.

  3. Para implantar a função que salva os resultados no Cloud Storage com um gatilho do Pub/Sub, execute o seguinte comando no diretório que contém o exemplo de código (ou, no caso de Java, o arquivo pom.xml):

    Node.js

    gcloud functions deploy ocr-save \
    --gen2 \
    --runtime=nodejs20 \
    --region=REGION \
    --source=. \
    --entry-point=saveResult \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Node.js compatível a fim de executar a função.

    Python

    gcloud functions deploy ocr-save \
    --gen2 \
    --runtime=python312 \
    --region=REGION \
    --source=. \
    --entry-point=save_result \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Python a fim de executar a função.

    Go

    gcloud functions deploy ocr-save \
    --gen2 \
    --runtime=go121 \
    --region=REGION \
    --source=. \
    --entry-point=save-result \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão do Go compatível a fim de executar a função.

    Java

    gcloud functions deploy ocr-save \
    --gen2 \
    --runtime=java17 \
    --region=REGION \
    --source=. \
    --entry-point=functions.OcrSaveResult \
    --memory=512MB \
    --trigger-topic YOUR_RESULT_TOPIC_NAME \
    --set-env-vars "GCP_PROJECT=YOUR_GCP_PROJECT_ID,RESULT_BUCKET=YOUR_RESULT_BUCKET_NAME"

    Use a flag --runtime para especificar o ID do ambiente de execução de uma versão compatível do Java a fim de executar a função.

Faça o upload de uma imagem

  1. Faça upload de uma imagem para o bucket do Cloud Storage:

    gcloud storage cp PATH_TO_IMAGE gs://YOUR_IMAGE_BUCKET_NAME

    onde

    • PATH_TO_IMAGE é um caminho para um arquivo de imagem que contém texto em seu sistema local.
    • YOUR_IMAGE_BUCKET_NAME é o nome do bucket onde está sendo feito upload das imagens.

    Você pode fazer o download de uma das imagens do projeto de amostra.

  2. Verifique os registros para confirmar se as execuções foram concluídas:

    gcloud functions logs read --limit 100
  3. Você pode ver as traduções salvas no bucket do Cloud Storage usado para YOUR_RESULT_BUCKET_NAME.

Limpar

Para evitar cobranças na sua conta do Google Cloud pelos recursos usados no tutorial, exclua o projeto que os contém ou mantenha o projeto e exclua os recursos individuais.

Exclua o projeto

O jeito mais fácil de evitar cobranças é excluindo o projeto que você criou para o tutorial.

Para excluir o projeto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Excluir a função

A exclusão de funções do Cloud Run não remove nenhum recurso armazenado no Cloud Storage.

Para excluir o Cloud Run functions criado neste tutorial, execute os seguintes comandos:

gcloud functions delete ocr-extract
gcloud functions delete ocr-translate
gcloud functions delete ocr-save

Também é possível excluir funções do Cloud Run pelo Console do Google Cloud.