Personalizzare la configurazione di GKE Inference Gateway


Questa pagina descrive come personalizzare il deployment di GKE Inference Gateway.

Questa pagina è rivolta agli esperti di networking responsabili della gestione dell'infrastruttura GKE e agli amministratori della piattaforma che gestiscono i carichi di lavoro di IA.

Per gestire e ottimizzare i carichi di lavoro di inferenza, configura le funzionalità avanzate di GKE Inference Gateway.

Comprendi e configura le seguenti funzionalità avanzate:

Configurare i controlli di sicurezza e affidabilità dell'IA

GKE Inference Gateway si integra con Model Armor per eseguire controlli di sicurezza su prompt e risposte per le applicazioni che utilizzano modelli linguistici di grandi dimensioni (LLM). Questa integrazione fornisce un ulteriore livello di applicazione delle misure di sicurezza a livello di infrastruttura che integra le misure di sicurezza a livello di applicazione. In questo modo, è possibile applicare i criteri in modo centralizzato a tutto il traffico LLM.

Il seguente diagramma illustra l'integrazione di Model Armor con GKE Inference Gateway su un cluster GKE:

Integrazione di Google Cloud Model Armor in un cluster GKE
Figura: integrazione di Armor in un cluster GKE

Per configurare i controlli di sicurezza dell'IA, svolgi i seguenti passaggi:

  1. Assicurati che siano soddisfatti i seguenti prerequisiti:

    1. Abilita il servizio Model Armor nel tuo progetto Google Cloud .
    2. Crea i modelli di Model Armor utilizzando la console Model Armor, Google Cloud CLI o l'API.
  2. Assicurati di aver già creato un modello Model Armor denominato my-model-armor-template-name-id.

  3. Per configurare GCPTrafficExtension, segui questi passaggi:

    1. Salva il seguente manifest di esempio come gcp-traffic-extension.yaml:

      kind: GCPTrafficExtension
      apiVersion: networking.gke.io/v1
      metadata:
        name: my-model-armor-extension
      spec:
        targetRefs:
        - group: "gateway.networking.k8s.io"
          kind: Gateway
          name: GATEWAY_NAME
        extensionChains:
        - name: my-model-armor-chain1
          matchCondition:
            celExpressions:
            - celMatcher: request.path.startsWith("/")
          extensions:
          - name: my-model-armor-service
            supportedEvents:
            - RequestHeaders
            timeout: 1s
            googleAPIServiceName: "modelarmor.us-central1.rep.googleapis.com"
            metadata:
              'extensionPolicy': MODEL_ARMOR_TEMPLATE_NAME
              'sanitizeUserPrompt': 'true'
              'sanitizeUserResponse': 'true'
      

      Sostituisci quanto segue:

      • GATEWAY_NAME: il nome del gateway.
      • MODEL_ARMOR_TEMPLATE_NAME: il nome del tuo modello Model Armor.

      Il file gcp-traffic-extension.yaml include le seguenti impostazioni:

      • targetRefs: specifica il gateway a cui si applica questa estensione.
      • extensionChains: definisce una catena di estensioni da applicare al traffico.
      • matchCondition: definisce le condizioni in cui vengono applicate le estensioni.
      • extensions: definisce le estensioni da applicare.
      • supportedEvents: specifica gli eventi durante i quali viene invocata l'estensione.
      • timeout: specifica il timeout per l'estensione.
      • googleAPIServiceName: specifica il nome del servizio per l'estensione.
      • metadata: specifica i metadati dell'estensione, tra cui extensionPolicy e le impostazioni di sanitizzazione della richiesta o della risposta.
    2. Applica il manifest di esempio al cluster:

      kubectl apply -f `gcp-traffic-extension.yaml`
      

Dopo aver configurato i controlli di sicurezza dell'IA e averli integrati con il tuo gateway, Model Armor filtra automaticamente i prompt e le risposte in base alle regole definite.

Configurare l'osservabilità

GKE Inference Gateway fornisce informazioni sullo stato di integrità, sulle prestazioni e sul comportamento dei carichi di lavoro di inferenza. In questo modo puoi identificare e risolvere i problemi, ottimizzare l'utilizzo delle risorse e garantire l'affidabilità delle tue applicazioni.

Google Cloud fornisce le seguenti dashboard di Cloud Monitoring che offrono l'osservabilità dell'inferenza per GKE Inference Gateway:

  • Dashboard di GKE Inference Gateway: fornisce metriche standard per il servizio LLM, come throughput di richieste e token, latenza, errori e utilizzo della cache per il InferencePool. Per visualizzare l'elenco completo delle metriche di GKE Inference Gateway disponibili, consulta Metriche esposte.
  • Dashboard del server modello: fornisce una dashboard per gli indicatori aurei del server modello. In questo modo puoi monitorare il carico e le prestazioni dei server dei modelli, ad esempio KVCache Utilization e Queue length. In questo modo puoi monitorare il carico e il rendimento dei server di modelli.
  • Dashboard del bilanciatore del carico: genera report sulle metriche del bilanciatore del carico, ad esempio richieste al secondo, latenza di elaborazione delle richieste end-to-end e codici di stato di richiesta/risposta. Queste metriche ti aiutano a comprendere il rendimento del servizio di gestione delle richieste end-to-end e a identificare gli errori.
  • Metriche Data Center GPU Manager (DCGM): fornisce metriche delle GPU NVIDIA, ad esempio le prestazioni e l'utilizzo delle GPU NVIDIA. Puoi configurare le metriche di NVIDIA Data Center GPU Manager (DCGM) in Cloud Monitoring. Per ulteriori informazioni, consulta Raccogliere e visualizzare le metriche DCGM.

Visualizza la dashboard di GKE Inference Gateway

Per visualizzare la dashboard di GKE Inference Gateway, svolgi i seguenti passaggi:

  1. Nella console Google Cloud, vai alla pagina Monitoring.

    Vai a Monitoring

  2. Nel riquadro di navigazione, seleziona Dashboard.

  3. Nella sezione Integrazioni, seleziona GMP.

  4. Nella pagina Modelli di dashboard di Cloud Monitoring, cerca "Gateway".

  5. Visualizza la dashboard di GKE Inference Gateway.

In alternativa, puoi seguire le istruzioni riportate nella dashboard di monitoraggio.

Configurare la dashboard di osservabilità del server del modello

Per raccogliere indicatori standard da ciascun server di modelli e capire cosa contribuisce al rendimento di GKE Inference Gateway, puoi configurare il monitoraggio automatico per i server di modelli. Sono inclusi i server di modelli come:

Per visualizzare le dashboard di integrazione:

  1. Raccogli le metriche dal server del modello.
  2. Nella console Google Cloud, vai alla pagina Monitoring.

    Vai a Monitoring

  3. Nel riquadro di navigazione, seleziona Dashboard.

  4. In Integrations (Integrazioni), seleziona GMP. Vengono visualizzate le dashboard di integrazione corrispondenti.

    Una visualizzazione delle dashboard di integrazione
    Figura: dashboard di integrazione

Per ulteriori informazioni, consulta Personalizzare il monitoraggio per le applicazioni.

Configura la dashboard di osservabilità del bilanciatore del carico

Per utilizzare il bilanciatore del carico delle applicazioni con GKE Inference Gateway, importa la dashboard seguendo questi passaggi:

  1. Per creare la dashboard del bilanciatore del carico, crea il seguente file e salvalo come dashboard.json:

    
    {
        "displayName": "GKE Inference Gateway (Load Balancer) Prometheus Overview",
        "dashboardFilters": [
          {
            "filterType": "RESOURCE_LABEL",
            "labelKey": "cluster",
            "templateVariable": "",
            "valueType": "STRING"
          },
          {
            "filterType": "RESOURCE_LABEL",
            "labelKey": "location",
            "templateVariable": "",
            "valueType": "STRING"
          },
          {
            "filterType": "RESOURCE_LABEL",
            "labelKey": "namespace",
            "templateVariable": "",
            "valueType": "STRING"
          },
          {
            "filterType": "RESOURCE_LABEL",
            "labelKey": "forwarding_rule_name",
            "templateVariable": "",
            "valueType": "STRING"
          }
        ],
        "labels": {},
        "mosaicLayout": {
          "columns": 48,
          "tiles": [
            {
              "height": 8,
              "width": 48,
              "widget": {
                "title": "",
                "id": "",
                "text": {
                  "content": "### Inferece Gateway Metrics\n\nPlease refer to the [official documentation](https://github.com/kubernetes-sigs/gateway-api-inference-extension/blob/main/site-src/guides/metrics.md) for more details of underlying metrics used in the dashboard.\n\n\n### External Application Load Balancer Metrics\n\nPlease refer to the [pubic page](/load-balancing/docs/metrics) for complete list of External Application Load Balancer metrics.\n\n### Model Server Metrics\n\nYou can redirect to the detail dashboard for model servers under the integration tab",
                  "format": "MARKDOWN",
                  "style": {
                    "backgroundColor": "#FFFFFF",
                    "fontSize": "FS_EXTRA_LARGE",
                    "horizontalAlignment": "H_LEFT",
                    "padding": "P_EXTRA_SMALL",
                    "pointerLocation": "POINTER_LOCATION_UNSPECIFIED",
                    "textColor": "#212121",
                    "verticalAlignment": "V_TOP"
                  }
                }
              }
            },
            {
              "yPos": 8,
              "height": 4,
              "width": 48,
              "widget": {
                "title": "External Application Load Balancer",
                "id": "",
                "sectionHeader": {
                  "dividerBelow": false,
                  "subtitle": ""
                }
              }
            },
            {
              "yPos": 12,
              "height": 15,
              "width": 24,
              "widget": {
                "title": "E2E Request Latency p99 (by code)",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.99, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))",
                        "unitOverride": "ms"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 12,
              "height": 43,
              "width": 48,
              "widget": {
                "title": "Regional",
                "collapsibleGroup": {
                  "collapsed": false
                },
                "id": ""
              }
            },
            {
              "yPos": 12,
              "xPos": 24,
              "height": 15,
              "width": 24,
              "widget": {
                "title": "E2E Request Latency p95 (by code)",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))",
                        "unitOverride": "ms"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 27,
              "height": 15,
              "width": 24,
              "widget": {
                "title": "E2E Request Latency p90 (by code)",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.90, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))",
                        "unitOverride": "ms"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 27,
              "xPos": 24,
              "height": 15,
              "width": 24,
              "widget": {
                "title": "E2E Request Latency p50 (by code)",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.50, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))",
                        "unitOverride": "ms"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 42,
              "height": 13,
              "width": 48,
              "widget": {
                "title": "Request /s (by code)",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by (response_code)(rate(loadbalancing_googleapis_com:https_external_regional_request_count{monitored_resource=\"http_external_regional_lb_rule\", forwarding_rule_name=~\".*inference-gateway.*\"}[1m]))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 55,
              "height": 4,
              "width": 48,
              "widget": {
                "title": "Inference Optimized Gateway",
                "id": "",
                "sectionHeader": {
                  "dividerBelow": false,
                  "subtitle": ""
                }
              }
            },
            {
              "yPos": 59,
              "height": 17,
              "width": 48,
              "widget": {
                "title": "Request Latency",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))",
                        "unitOverride": "s"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 59,
              "height": 65,
              "width": 48,
              "widget": {
                "title": "Inference Model",
                "collapsibleGroup": {
                  "collapsed": false
                },
                "id": ""
              }
            },
            {
              "yPos": 76,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Request / s",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by(model_name, target_model_name) (rate(inference_model_request_total{}[${__interval}]))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 76,
              "xPos": 24,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Request Error / s",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by (error_code,model_name,target_model_name) (rate(inference_model_request_error_total[${__interval}]))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 92,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Request Size",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 92,
              "xPos": 24,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Response Size",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))",
                        "unitOverride": "By"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 108,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Input Token Count",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": []
                }
              }
            },
            {
              "yPos": 108,
              "xPos": 24,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Output Token Count",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": []
                }
              }
            },
            {
              "yPos": 124,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Average KV Cache Utilization",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by (name)(avg_over_time(inference_pool_average_kv_cache_utilization[${__interval}]))*100",
                        "unitOverride": "%"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 124,
              "height": 16,
              "width": 48,
              "widget": {
                "title": "Inference Pool",
                "collapsibleGroup": {
                  "collapsed": false
                },
                "id": ""
              }
            },
            {
              "yPos": 124,
              "xPos": 24,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Average Queue Size",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by (name) (avg_over_time(inference_pool_average_queue_size[${__interval}]))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 140,
              "height": 4,
              "width": 48,
              "widget": {
                "title": "Model Server",
                "id": "",
                "sectionHeader": {
                  "dividerBelow": true,
                  "subtitle": "The following charts will only be populated if model server is exporting metrics."
                }
              }
            },
            {
              "yPos": 144,
              "height": 32,
              "width": 48,
              "widget": {
                "title": "vLLM",
                "collapsibleGroup": {
                  "collapsed": false
                },
                "id": ""
              }
            },
            {
              "yPos": 144,
              "xPos": 1,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Token Throughput",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "Prompt Tokens/Sec",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by(model_name) (rate(vllm:prompt_tokens_total[${__interval}]))",
                        "unitOverride": ""
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "Generation Tokens/Sec",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "sum by(model_name) (rate(vllm:generation_tokens_total[${__interval}]))",
                        "unitOverride": ""
                      }
                    }
                  ],
                  "thresholds": []
                }
              }
            },
            {
              "yPos": 144,
              "xPos": 25,
              "height": 16,
              "width": 23,
              "widget": {
                "title": "Request Latency",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 160,
              "xPos": 1,
              "height": 16,
              "width": 24,
              "widget": {
                "title": "Time Per Output Token Latency",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            },
            {
              "yPos": 160,
              "xPos": 25,
              "height": 16,
              "width": 23,
              "widget": {
                "title": "Time To First Token Latency",
                "id": "",
                "xyChart": {
                  "chartOptions": {
                    "displayHorizontal": false,
                    "mode": "COLOR",
                    "showLegend": false
                  },
                  "dataSets": [
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p95",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p90",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    },
                    {
                      "breakdowns": [],
                      "dimensions": [],
                      "legendTemplate": "p50",
                      "measures": [],
                      "plotType": "LINE",
                      "targetAxis": "Y1",
                      "timeSeriesQuery": {
                        "outputFullDuration": false,
                        "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))",
                        "unitOverride": "s"
                      }
                    }
                  ],
                  "thresholds": [],
                  "yAxis": {
                    "label": "",
                    "scale": "LINEAR"
                  }
                }
              }
            }
          ]
        }
      }
    
  2. Per installare la dashboard in Google Cloud Armor, esegui il comando seguente:

    gcloud monitoring dashboards create --project $PROJECT_ID --config-from-file=dashboard.json
    
  3. Apri la pagina Monitoraggio nella console Google Cloud.

    Vai a Monitoring

  4. Nel menu di navigazione, seleziona Dashboard.

  5. Seleziona la dashboard Panoramica di Prometheus per gateway ottimizzato per l'inferenza (con L7LB) dall'elenco delle dashboard personalizzate.

  6. La sezione Bilanciatore del carico delle applicazioni esterno mostra le seguenti metriche di bilanciamento del carico:

    • Latenza richiesta E2E p99 (per codice): mostra il 99° percentile della latenza delle richieste end-to-end per le richieste gestite dal bilanciatore del carico, aggregata in base al codice di stato restituito.
    • Richieste (per codice): mostra il numero di richieste gestite dal bilanciatore del carico, aggregate in base al codice di stato restituito.

Configurare il logging per GKE Inference Gateway

La configurazione della registrazione per GKE Inference Gateway fornisce informazioni dettagliate su richieste e risposte, utili per la risoluzione dei problemi, la verifica e l'analisi delle prestazioni. I log di accesso HTTP registrano ogni richiesta e risposta, incluse intestazioni, codici di stato e timestamp. Questo livello di dettaglio può aiutarti a identificare i problemi, trovare gli errori e comprendere il comportamento del tuo workload di inferenza.

Per configurare la registrazione per GKE Inference Gateway, abilita la registrazione degli accessi HTTP per ciascuno dei tuoi oggetti InferencePool.

  1. Salva il seguente manifest di esempio come logging-backend-policy.yaml:

    apiVersion: networking.gke.io/v1
    kind: GCPBackendPolicy
    metadata:
      name: logging-backend-policy
      namespace: NAMESPACE_NAME
    spec:
      default:
        logging:
          enabled: true
          sampleRate: 500000
      targetRef:
        group: inference.networking.x-k8s.io
        kind: InferencePool
        name: INFERENCE_POOL_NAME
    

    Sostituisci quanto segue:

    • NAMESPACE_NAME: il nome dello spazio dei nomi in cui è dipiegato InferencePool.
    • INFERENCE_POOL_NAME: il nome del InferencePool.
  2. Applica il manifest di esempio al cluster:

    kubectl apply -f logging-backend-policy.yaml
    

Dopo aver applicato questo manifest, GKE Inference Gateway attiva i log di accesso HTTP per il InferencePool specificato. Puoi visualizzare questi log in Cloud Logging. I log includono informazioni dettagliate su ogni richiesta e risposta, ad esempio l'URL della richiesta, le intestazioni, il codice di stato della risposta e la latenza.

Configura scalabilità automatica

La scalabilità automatica regola l'allocazione delle risorse in risposta alle variazioni del carico, mantenendo le prestazioni e l'efficienza delle risorse aggiungendo o rimuovendo dinamicamente i pod in base alla domanda. Per GKE Inference Gateway, questo comporta la scalabilità automatica orizzontale dei pod in ogni InferencePool. Horizontal Pod Autoscaler (HPA) di GKE scala automaticamente i pod in base alle metriche del server di modelli come KVCache Utilization. In questo modo, il servizio di inferenza gestisce diversi carichi di lavoro e volumi di query, gestendo al contempo in modo efficiente l'utilizzo delle risorse.

Per configurare le istanze InferencePool in modo che vengano scalate automaticamente in base alle metriche prodotte da GKE Inference Gateway, svolgi i seguenti passaggi:

  1. Esegui il deployment di un oggetto PodMonitoring nel cluster per raccogliere le metriche prodotte da GKE Inference Gateway. Per ulteriori informazioni, consulta Configurare l'osservabilità.

  2. Esegui il deployment dell'adattatore Stackdriver delle metriche personalizzate per concedere all'HPA l'accesso alle metriche:

    1. Salva il seguente manifest di esempio come adapter_new_resource_model.yaml:

      apiVersion: v1
      kind: Namespace
      metadata:
        name: custom-metrics
      ---
      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: custom-metrics-stackdriver-adapter
        namespace: custom-metrics
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: custom-metrics:system:auth-delegator
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: system:auth-delegator
      subjects:
      - kind: ServiceAccount
        name: custom-metrics-stackdriver-adapter
        namespace: custom-metrics
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: RoleBinding
      metadata:
        name: custom-metrics-auth-reader
        namespace: kube-system
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: Role
        name: extension-apiserver-authentication-reader
      subjects:
      - kind: ServiceAccount
        name: custom-metrics-stackdriver-adapter
        namespace: custom-metrics
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: custom-metrics-resource-reader
        namespace: custom-metrics
      rules:
      - apiGroups:
        - ""
        resources:
        - pods
        - nodes
        - nodes/stats
        verbs:
        - get
        - list
        - watch
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: custom-metrics-resource-reader
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: custom-metrics-resource-reader
      subjects:
      - kind: ServiceAccount
        name: custom-metrics-stackdriver-adapter
        namespace: custom-metrics
      ---
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        run: custom-metrics-stackdriver-adapter
        k8s-app: custom-metrics-stackdriver-adapter
      spec:
        replicas: 1
        selector:
          matchLabels:
            run: custom-metrics-stackdriver-adapter
            k8s-app: custom-metrics-stackdriver-adapter
        template:
          metadata:
            labels:
              run: custom-metrics-stackdriver-adapter
              k8s-app: custom-metrics-stackdriver-adapter
              kubernetes.io/cluster-service: "true"
          spec:
            serviceAccountName: custom-metrics-stackdriver-adapter
            containers:
            - image: gcr.io/gke-release/custom-metrics-stackdriver-adapter:v0.15.2-gke.1
              imagePullPolicy: Always
              name: pod-custom-metrics-stackdriver-adapter
              command:
              - /adapter
              - --use-new-resource-model=true
              - --fallback-for-container-metrics=true
              resources:
                limits:
                  cpu: 250m
                  memory: 200Mi
                requests:
                  cpu: 250m
                  memory: 200Mi
      ---
      apiVersion: v1
      kind: Service
      metadata:
        labels:
          run: custom-metrics-stackdriver-adapter
          k8s-app: custom-metrics-stackdriver-adapter
          kubernetes.io/cluster-service: 'true'
          kubernetes.io/name: Adapter
        name: custom-metrics-stackdriver-adapter
        namespace: custom-metrics
      spec:
        ports:
        - port: 443
          protocol: TCP
          targetPort: 443
        selector:
          run: custom-metrics-stackdriver-adapter
          k8s-app: custom-metrics-stackdriver-adapter
        type: ClusterIP
      ---
      apiVersion: apiregistration.k8s.io/v1
      kind: APIService
      metadata:
        name: v1beta1.custom.metrics.k8s.io
      spec:
        insecureSkipTLSVerify: true
        group: custom.metrics.k8s.io
        groupPriorityMinimum: 100
        versionPriority: 100
        service:
          name: custom-metrics-stackdriver-adapter
          namespace: custom-metrics
        version: v1beta1
      ---
      apiVersion: apiregistration.k8s.io/v1
      kind: APIService
      metadata:
        name: v1beta2.custom.metrics.k8s.io
      spec:
        insecureSkipTLSVerify: true
        group: custom.metrics.k8s.io
        groupPriorityMinimum: 100
        versionPriority: 200
        service:
          name: custom-metrics-stackdriver-adapter
          namespace: custom-metrics
        version: v1beta2
      ---
      apiVersion: apiregistration.k8s.io/v1
      kind: APIService
      metadata:
        name: v1beta1.external.metrics.k8s.io
      spec:
        insecureSkipTLSVerify: true
        group: external.metrics.k8s.io
        groupPriorityMinimum: 100
        versionPriority: 100
        service:
          name: custom-metrics-stackdriver-adapter
          namespace: custom-metrics
        version: v1beta1
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: external-metrics-reader
      rules:
      - apiGroups:
        - "external.metrics.k8s.io"
        resources:
        - "*"
        verbs:
        - list
        - get
        - watch
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: external-metrics-reader
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: external-metrics-reader
      subjects:
      - kind: ServiceAccount
        name: horizontal-pod-autoscaler
        namespace: kube-system
      
    2. Applica il manifest di esempio al cluster:

      kubectl apply -f adapter_new_resource_model.yaml
      
  3. Per concedere all'adattatore le autorizzazioni per leggere le metriche dal progetto, esegui il seguente comando:

    $ PROJECT_ID=PROJECT_ID
    $ PROJECT_NUMBER=$(gcloud projects describe PROJECT_ID --format="value(projectNumber)")
    $ gcloud projects add-iam-policy-binding projects/PROJECT_ID \
      --role roles/monitoring.viewer \
      --member=principal://iam.googleapis.com/projects/PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/subject/ns/custom-metrics/sa/custom-metrics-stackdriver-adapter
    

    Sostituisci PROJECT_ID con il tuo Google Cloud ID progetto.

  4. Per ogni InferencePool, esegui il deployment di un'HPA simile alla seguente:

    apiVersion: autoscaling/v2
    kind: HorizontalPodAutoscaler
    metadata:
      name: INFERENCE_POOL_NAME
      namespace: INFERENCE_POOL_NAMESPACE
    spec:
      scaleTargetRef:
        apiVersion: apps/v1
        kind: Deployment
        name: INFERENCE_POOL_NAME
      minReplicas: MIN_REPLICAS
      maxReplicas: MAX_REPLICAS
      metrics:
      - type: External
        external:
          metric:
            name: prometheus.googleapis.com|inference_pool_average_kv_cache_utilization|gauge
            selector:
              matchLabels:
                metric.labels.name: INFERENCE_POOL_NAME
                resource.labels.cluster: CLUSTER_NAME
                resource.labels.namespace: INFERENCE_POOL_NAMESPACE
          target:
            type: AverageValue
            averageValue: TARGET_VALUE
    

    Sostituisci quanto segue:

    • INFERENCE_POOL_NAME: il nome del InferencePool.
    • INFERENCE_POOL_NAMESPACE: lo spazio dei nomi di InferencePool.
    • CLUSTER_NAME: il nome del cluster.
    • MIN_REPLICAS: la disponibilità minima del InferencePool (capacità di base). L'HPA mantiene attivo questo numero di repliche quando l'utilizzo è inferiore alla soglia target dell'HPA. I carichi di lavoro ad alta disponibilità devono impostare questo valore su un valore superiore a 1 per garantire la disponibilità continua durante le interruzioni dei pod.
    • MAX_REPLICAS: il valore che limita il numero di acceleratori da assegnare ai workload ospitati nel InferencePool. L'HPA non aumenterà il numero di repliche oltre questo valore. Durante i periodi di picco del traffico, monitora il numero di repliche per assicurarti che il valore del campo MAX_REPLICAS fornisca un margine sufficiente per consentire l'aumento del carico di lavoro in modo da mantenere le caratteristiche di prestazioni del carico di lavoro scelto.
    • TARGET_VALUE: il valore che rappresenta il target sceltoKV-Cache Utilization per ogni server di modelli. Si tratta di un numero compreso tra 0 e 100 ed è molto dipendente dal server del modello, dal modello, dall'acceleratore e dalle caratteristiche del traffico in entrata. Puoi determinare questo valore target sperimentalmente tramite test di carico e tracciando un grafico del throughput rispetto alla latenza. Seleziona una combinazione di throughput e latenza scelta dal grafico e usa il valore KV-Cache Utilization corrispondente come target HPA. Devi ottimizzare e monitorare attentamente questo valore per ottenere i risultati in termini di prezzo e prestazioni che hai scelto. Puoi utilizzare i consigli di inferenza GKE per determinare automaticamente questo valore.

Passaggi successivi