En esta página, se describe cómo personalizar la implementación de GKE Inference Gateway.
Esta página está destinada a especialistas en redes responsables de administrar la infraestructura de GKE y a los administradores de plataformas que administran cargas de trabajo de IA.
Para administrar y optimizar las cargas de trabajo de inferencia, configura las funciones avanzadas de la puerta de enlace de inferencia de GKE.
Comprende y configura las siguientes funciones avanzadas:
- Para usar la integración de Model Armor, configura las verificaciones de seguridad de la IA.
- Para ver los paneles y las métricas del servidor de GKE Inference Gateway y del modelo, y habilitar el registro de acceso HTTP para obtener información detallada sobre la solicitud y la respuesta, configura la observabilidad.
- Para escalar automáticamente tus implementaciones de GKE Inference Gateway, configura el ajuste de escala automático.
Configura las verificaciones de seguridad y protección de la IA
GKE Inference Gateway se integra con Model Armor para realizar verificaciones de seguridad en las instrucciones y respuestas de las aplicaciones que usan modelos de lenguaje grandes (LLM). Esta integración proporciona una capa adicional de aplicación de seguridad a nivel de la infraestructura que complementa las medidas de seguridad a nivel de la aplicación. Esto permite la aplicación centralizada de políticas en todo el tráfico de LLM.
En el siguiente diagrama, se ilustra la integración de Model Armor con la puerta de enlace de inferencia de GKE en un clúster de GKE:

Para configurar las verificaciones de seguridad de IA, sigue estos pasos:
Asegúrate de que se cumplan los siguientes requisitos:
- Habilita el servicio de Model Armor en tu Google Cloud proyecto.
- Crea las plantillas de Model Armor con la consola de Model Armor, Google Cloud CLI o la API.
Asegúrate de haber creado una plantilla de Model Armor llamada
my-model-armor-template-name-id
.Para configurar
GCPTrafficExtension
, sigue estos pasos:Guarda el siguiente manifiesto de muestra como
gcp-traffic-extension.yaml
:kind: GCPTrafficExtension apiVersion: networking.gke.io/v1 metadata: name: my-model-armor-extension spec: targetRefs: - group: "gateway.networking.k8s.io" kind: Gateway name: GATEWAY_NAME extensionChains: - name: my-model-armor-chain1 matchCondition: celExpressions: - celMatcher: request.path.startsWith("/") extensions: - name: my-model-armor-service supportedEvents: - RequestHeaders timeout: 1s googleAPIServiceName: "modelarmor.us-central1.rep.googleapis.com" metadata: 'extensionPolicy': MODEL_ARMOR_TEMPLATE_NAME 'sanitizeUserPrompt': 'true' 'sanitizeUserResponse': 'true'
Reemplaza lo siguiente:
GATEWAY_NAME
: El nombre de la puerta de enlace.MODEL_ARMOR_TEMPLATE_NAME
: Es el nombre de tu plantilla de Model Armor.
El archivo
gcp-traffic-extension.yaml
incluye la siguiente configuración:targetRefs
: Especifica la puerta de enlace a la que se aplica esta extensión.extensionChains
: Define una cadena de extensiones que se aplicarán al tráfico.matchCondition
: Define las condiciones en las que se aplican las extensiones.extensions
: Define las extensiones que se aplicarán.supportedEvents
: Especifica los eventos durante los cuales se invoca la extensión.timeout
: Especifica el tiempo de espera de la extensión.googleAPIServiceName
: Especifica el nombre del servicio para la extensión.metadata
: Especifica los metadatos de la extensión, incluidosextensionPolicy
y la configuración de limpieza de instrucciones o respuestas.
Aplica el manifiesto de ejemplo a tu clúster:
kubectl apply -f `gcp-traffic-extension.yaml`
Después de configurar las verificaciones de seguridad de IA y de integrarlas a tu puerta de enlace, Model Armor filtra automáticamente las instrucciones y las respuestas según las reglas definidas.
Configura la observabilidad
GKE Inference Gateway proporciona estadísticas sobre el estado, el rendimiento y el comportamiento de tus cargas de trabajo de inferencia. Esto te ayuda a identificar y resolver problemas, optimizar el uso de recursos y garantizar la confiabilidad de tus aplicaciones.
Google Cloud proporciona los siguientes paneles de Cloud Monitoring que ofrecen observabilidad de inferencia para la puerta de enlace de inferencia de GKE:
- Panel de la puerta de enlace de inferencia de GKE: proporciona métricas de referencia para la entrega de LLM, como la capacidad de procesamiento de solicitudes y tokens, la latencia, los errores y el uso de la caché para
InferencePool
. Para ver la lista completa de las métricas disponibles de GKE Inference Gateway, consulta Métricas expuestas. - Panel del servidor de modelos: Proporciona un panel para los indicadores dorados del servidor de modelos. Esto te permite supervisar la carga y el rendimiento de los servidores de modelos, como
KVCache Utilization
yQueue length
. Esto te permite supervisar la carga y el rendimiento de los servidores de modelos. - Panel del balanceador de cargas: Genera informes de métricas del balanceador de cargas, como solicitudes por segundo, latencia de entrega de solicitudes de extremo a extremo y códigos de estado de solicitud-respuesta. Estas métricas te ayudan a comprender el rendimiento de la entrega de solicitudes de extremo a extremo y a identificar errores.
- Métricas del administrador de GPU del centro de datos (DCGM): Proporciona métricas de las GPUs de NVIDIA, como el rendimiento y el uso de las GPUs de NVIDIA. Puedes configurar las métricas del administrador de GPU del centro de datos de NVIDIA (DCGM) en Cloud Monitoring. Para obtener más información, consulta Recopila y visualiza métricas de DCGM.
Cómo ver el panel de la puerta de enlace de inferencia de GKE
Para ver el panel de la puerta de enlace de inferencia de GKE, sigue estos pasos:
En la consola de Google Cloud, ve a la página Monitoring.
En el panel de navegación, selecciona Paneles.
En la sección Integraciones, selecciona GMP.
En la página Plantillas de paneles de Cloud Monitoring, busca “Puerta de enlace”.
Consulta el panel de la puerta de enlace de inferencia de GKE.
Como alternativa, puedes seguir las instrucciones que se indican en el panel de supervisión.
Configura el panel de observabilidad del servidor de modelos
Para recopilar indicadores de oro de cada servidor de modelos y comprender qué contribuye al rendimiento de GKE Inference Gateway, puedes configurar la supervisión automática de tus servidores de modelos. Esto incluye servidores de modelos como los siguientes:
Para ver los paneles de integración, sigue estos pasos:
- Recopila las métricas de tu servidor de modelos.
En la consola de Google Cloud, ve a la página Monitoring.
En el panel de navegación, selecciona Paneles.
En Integraciones, selecciona GMP. Se muestran los paneles de integración correspondientes.
Figura: Paneles de integración
Para obtener más información, consulta Cómo personalizar la supervisión de aplicaciones.
Configura el panel de observabilidad del balanceador de cargas
Para usar el balanceador de cargas de aplicaciones con la puerta de enlace de inferencia de GKE, sigue estos pasos para importar el panel:
Para crear el panel del balanceador de cargas, crea el siguiente archivo y guárdalo como
dashboard.json
:{ "displayName": "GKE Inference Gateway (Load Balancer) Prometheus Overview", "dashboardFilters": [ { "filterType": "RESOURCE_LABEL", "labelKey": "cluster", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "location", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "namespace", "templateVariable": "", "valueType": "STRING" }, { "filterType": "RESOURCE_LABEL", "labelKey": "forwarding_rule_name", "templateVariable": "", "valueType": "STRING" } ], "labels": {}, "mosaicLayout": { "columns": 48, "tiles": [ { "height": 8, "width": 48, "widget": { "title": "", "id": "", "text": { "content": "### Inferece Gateway Metrics\n\nPlease refer to the [official documentation](https://github.com/kubernetes-sigs/gateway-api-inference-extension/blob/main/site-src/guides/metrics.md) for more details of underlying metrics used in the dashboard.\n\n\n### External Application Load Balancer Metrics\n\nPlease refer to the [pubic page](/load-balancing/docs/metrics) for complete list of External Application Load Balancer metrics.\n\n### Model Server Metrics\n\nYou can redirect to the detail dashboard for model servers under the integration tab", "format": "MARKDOWN", "style": { "backgroundColor": "#FFFFFF", "fontSize": "FS_EXTRA_LARGE", "horizontalAlignment": "H_LEFT", "padding": "P_EXTRA_SMALL", "pointerLocation": "POINTER_LOCATION_UNSPECIFIED", "textColor": "#212121", "verticalAlignment": "V_TOP" } } } }, { "yPos": 8, "height": 4, "width": 48, "widget": { "title": "External Application Load Balancer", "id": "", "sectionHeader": { "dividerBelow": false, "subtitle": "" } } }, { "yPos": 12, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p99 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.99, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 12, "height": 43, "width": 48, "widget": { "title": "Regional", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 12, "xPos": 24, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p95 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 27, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p90 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.90, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 27, "xPos": 24, "height": 15, "width": 24, "widget": { "title": "E2E Request Latency p50 (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.50, sum by(le, response_code) (rate(loadbalancing_googleapis_com:https_external_regional_total_latencies_bucket{monitored_resource=\"http_external_regional_lb_rule\",forwarding_rule_name=~\".*inference-gateway.*\"}[1m])))", "unitOverride": "ms" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 42, "height": 13, "width": 48, "widget": { "title": "Request /s (by code)", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (response_code)(rate(loadbalancing_googleapis_com:https_external_regional_request_count{monitored_resource=\"http_external_regional_lb_rule\", forwarding_rule_name=~\".*inference-gateway.*\"}[1m]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 55, "height": 4, "width": 48, "widget": { "title": "Inference Optimized Gateway", "id": "", "sectionHeader": { "dividerBelow": false, "subtitle": "" } } }, { "yPos": 59, "height": 17, "width": 48, "widget": { "title": "Request Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_duration_seconds_bucket{}[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 59, "height": 65, "width": 48, "widget": { "title": "Inference Model", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 76, "height": 16, "width": 24, "widget": { "title": "Request / s", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name, target_model_name) (rate(inference_model_request_total{}[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 76, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Request Error / s", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (error_code,model_name,target_model_name) (rate(inference_model_request_error_total[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 92, "height": 16, "width": 24, "widget": { "title": "Request Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_request_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 92, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Response Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_response_sizes_bucket{}[${__interval}])))", "unitOverride": "By" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 108, "height": 16, "width": 24, "widget": { "title": "Input Token Count", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_input_tokens_bucket{}[${__interval}])))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 108, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Output Token Count", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(inference_model_output_tokens_bucket{}[${__interval}])))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 124, "height": 16, "width": 24, "widget": { "title": "Average KV Cache Utilization", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (name)(avg_over_time(inference_pool_average_kv_cache_utilization[${__interval}]))*100", "unitOverride": "%" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 124, "height": 16, "width": 48, "widget": { "title": "Inference Pool", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 124, "xPos": 24, "height": 16, "width": 24, "widget": { "title": "Average Queue Size", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by (name) (avg_over_time(inference_pool_average_queue_size[${__interval}]))", "unitOverride": "" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 140, "height": 4, "width": 48, "widget": { "title": "Model Server", "id": "", "sectionHeader": { "dividerBelow": true, "subtitle": "The following charts will only be populated if model server is exporting metrics." } } }, { "yPos": 144, "height": 32, "width": 48, "widget": { "title": "vLLM", "collapsibleGroup": { "collapsed": false }, "id": "" } }, { "yPos": 144, "xPos": 1, "height": 16, "width": 24, "widget": { "title": "Token Throughput", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "Prompt Tokens/Sec", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name) (rate(vllm:prompt_tokens_total[${__interval}]))", "unitOverride": "" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "Generation Tokens/Sec", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "sum by(model_name) (rate(vllm:generation_tokens_total[${__interval}]))", "unitOverride": "" } } ], "thresholds": [] } } }, { "yPos": 144, "xPos": 25, "height": 16, "width": 23, "widget": { "title": "Request Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:e2e_request_latency_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 160, "xPos": 1, "height": 16, "width": 24, "widget": { "title": "Time Per Output Token Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_per_output_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } }, { "yPos": 160, "xPos": 25, "height": 16, "width": 23, "widget": { "title": "Time To First Token Latency", "id": "", "xyChart": { "chartOptions": { "displayHorizontal": false, "mode": "COLOR", "showLegend": false }, "dataSets": [ { "breakdowns": [], "dimensions": [], "legendTemplate": "p95", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.95, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p90", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.9, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } }, { "breakdowns": [], "dimensions": [], "legendTemplate": "p50", "measures": [], "plotType": "LINE", "targetAxis": "Y1", "timeSeriesQuery": { "outputFullDuration": false, "prometheusQuery": "histogram_quantile(0.5, sum by(le) (rate(vllm:time_to_first_token_seconds_bucket[${__interval}])))", "unitOverride": "s" } } ], "thresholds": [], "yAxis": { "label": "", "scale": "LINEAR" } } } } ] } }
Para instalar el panel en Google Cloud Armor, ejecuta el siguiente comando:
gcloud monitoring dashboards create --project $PROJECT_ID --config-from-file=dashboard.json
Abre la página Supervisión en la consola de Google Cloud.
En el menú de navegación, selecciona Paneles.
Selecciona el panel Inference Optimized Gateway (with L7LB) Prometheus Overview de la lista de paneles personalizados.
En la sección Balanceador de cargas de aplicaciones externo, se muestran las siguientes métricas de balanceo de cargas:
- P99 de latencia de solicitud de extremo a extremo (por código): Muestra el percentil noventa y nueve de la latencia de solicitud de extremo a extremo para las solicitudes que entrega el balanceador de cargas, agregadas por código de estado que se muestra.
- Solicitudes (por código): Muestra la cantidad de solicitudes que entrega el balanceador de cargas, agregadas por código de estado que se muestra.
Configura el registro para la puerta de enlace de inferencia de GKE
La configuración del registro para GKE Inference Gateway proporciona información detallada sobre las solicitudes y las respuestas, lo que es útil para solucionar problemas, realizar auditorías y analizar el rendimiento. Los registros de acceso HTTP registran cada solicitud y respuesta, incluidos los encabezados, los códigos de estado y las marcas de tiempo. Este nivel de detalle puede ayudarte a identificar problemas, encontrar errores y comprender el comportamiento de tus cargas de trabajo de inferencia.
Para configurar el registro de GKE Inference Gateway, habilita el registro de acceso HTTP para cada uno de tus objetos InferencePool
.
Guarda el siguiente manifiesto de muestra como
logging-backend-policy.yaml
:apiVersion: networking.gke.io/v1 kind: GCPBackendPolicy metadata: name: logging-backend-policy namespace: NAMESPACE_NAME spec: default: logging: enabled: true sampleRate: 500000 targetRef: group: inference.networking.x-k8s.io kind: InferencePool name: INFERENCE_POOL_NAME
Reemplaza lo siguiente:
NAMESPACE_NAME
: Es el nombre del espacio de nombres en el que se implementa tuInferencePool
.INFERENCE_POOL_NAME
: el nombre deInferencePool
.
Aplica el manifiesto de ejemplo a tu clúster:
kubectl apply -f logging-backend-policy.yaml
Después de aplicar este manifiesto, la puerta de enlace de inferencia de GKE habilita los registros de acceso HTTP para el InferencePool
especificado. Puedes ver estos registros en
Cloud Logging. Los registros incluyen información detallada sobre cada solicitud y respuesta, como la URL de la solicitud, los encabezados, el código de estado de la respuesta y la latencia.
Configurar ajuste de escala automático
El ajuste de escala automático ajusta la asignación de recursos en respuesta a las variaciones de carga y mantiene el rendimiento y la eficiencia de los recursos agregando o quitando Pods de forma dinámica según la demanda. En el caso de la puerta de enlace de inferencia de GKE, esto implica el ajuste de escala automático horizontal de los pods en cada InferencePool
. El escalador automático horizontal de Pods (HPA) de GKE escala automáticamente los Pods según las métricas del servidor de modelos, como KVCache Utilization
. Esto garantiza que el servicio de inferencia controle cargas de trabajo y volúmenes de consultas diferentes mientras administra de manera eficiente el uso de recursos.
Para configurar instancias de InferencePool
de modo que se ajusten automáticamente en función de las métricas que produce la puerta de enlace de inferencia de GKE, sigue estos pasos:
Implementa un objeto
PodMonitoring
en el clúster para recopilar las métricas que produce la puerta de enlace de inferencia de GKE. Para obtener más información, consulta Configura la observabilidad.Implementa el adaptador de métricas personalizadas de Stackdriver para darle acceso a las métricas a HPA:
Guarda el siguiente manifiesto de muestra como
adapter_new_resource_model.yaml
:apiVersion: v1 kind: Namespace metadata: name: custom-metrics --- apiVersion: v1 kind: ServiceAccount metadata: name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: custom-metrics-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader namespace: custom-metrics rules: - apiGroups: - "" resources: - pods - nodes - nodes/stats verbs: - get - list - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics-resource-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-resource-reader subjects: - kind: ServiceAccount name: custom-metrics-stackdriver-adapter namespace: custom-metrics --- apiVersion: apps/v1 kind: Deployment metadata: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter spec: replicas: 1 selector: matchLabels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter template: metadata: labels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter kubernetes.io/cluster-service: "true" spec: serviceAccountName: custom-metrics-stackdriver-adapter containers: - image: gcr.io/gke-release/custom-metrics-stackdriver-adapter:v0.15.2-gke.1 imagePullPolicy: Always name: pod-custom-metrics-stackdriver-adapter command: - /adapter - --use-new-resource-model=true - --fallback-for-container-metrics=true resources: limits: cpu: 250m memory: 200Mi requests: cpu: 250m memory: 200Mi --- apiVersion: v1 kind: Service metadata: labels: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter kubernetes.io/cluster-service: 'true' kubernetes.io/name: Adapter name: custom-metrics-stackdriver-adapter namespace: custom-metrics spec: ports: - port: 443 protocol: TCP targetPort: 443 selector: run: custom-metrics-stackdriver-adapter k8s-app: custom-metrics-stackdriver-adapter type: ClusterIP --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.custom.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 100 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta1 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta2.custom.metrics.k8s.io spec: insecureSkipTLSVerify: true group: custom.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 200 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta2 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.external.metrics.k8s.io spec: insecureSkipTLSVerify: true group: external.metrics.k8s.io groupPriorityMinimum: 100 versionPriority: 100 service: name: custom-metrics-stackdriver-adapter namespace: custom-metrics version: v1beta1 --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: external-metrics-reader rules: - apiGroups: - "external.metrics.k8s.io" resources: - "*" verbs: - list - get - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: external-metrics-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: external-metrics-reader subjects: - kind: ServiceAccount name: horizontal-pod-autoscaler namespace: kube-system
Aplica el manifiesto de ejemplo a tu clúster:
kubectl apply -f adapter_new_resource_model.yaml
Para otorgarle permisos al adaptador para leer métricas del proyecto, ejecuta el siguiente comando:
$ PROJECT_ID=PROJECT_ID $ PROJECT_NUMBER=$(gcloud projects describe PROJECT_ID --format="value(projectNumber)") $ gcloud projects add-iam-policy-binding projects/PROJECT_ID \ --role roles/monitoring.viewer \ --member=principal://iam.googleapis.com/projects/PROJECT_NUMBER/locations/global/workloadIdentityPools/$PROJECT_ID.svc.id.goog/subject/ns/custom-metrics/sa/custom-metrics-stackdriver-adapter
Reemplaza
PROJECT_ID
por el Google Cloud ID de tu proyecto.Para cada
InferencePool
, implementa un HPA similar al siguiente:apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: INFERENCE_POOL_NAME namespace: INFERENCE_POOL_NAMESPACE spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: INFERENCE_POOL_NAME minReplicas: MIN_REPLICAS maxReplicas: MAX_REPLICAS metrics: - type: External external: metric: name: prometheus.googleapis.com|inference_pool_average_kv_cache_utilization|gauge selector: matchLabels: metric.labels.name: INFERENCE_POOL_NAME resource.labels.cluster: CLUSTER_NAME resource.labels.namespace: INFERENCE_POOL_NAMESPACE target: type: AverageValue averageValue: TARGET_VALUE
Reemplaza lo siguiente:
INFERENCE_POOL_NAME
: el nombre deInferencePool
.INFERENCE_POOL_NAMESPACE
: Es el espacio de nombres deInferencePool
.CLUSTER_NAME
: el nombre del clústerMIN_REPLICAS
: Es la disponibilidad mínima deInferencePool
(capacidad de referencia). El HPA mantiene esta cantidad de réplicas cuando el uso está por debajo del umbral objetivo del HPA. Las cargas de trabajo de alta disponibilidad deben establecer este valor en un valor superior a1
para garantizar la disponibilidad continua durante las interrupciones del pod.MAX_REPLICAS
: Es el valor que restringe la cantidad de aceleradores que se deben asignar a las cargas de trabajo alojadas enInferencePool
. El HPA no aumentará la cantidad de réplicas más allá de este valor. Durante las horas de mayor tráfico, supervisa la cantidad de réplicas para asegurarte de que el valor del campoMAX_REPLICAS
proporcione suficiente margen para que la carga de trabajo pueda escalar y mantener las características de rendimiento elegidas.TARGET_VALUE
: Es el valor que representa el objetivo elegidoKV-Cache Utilization
por servidor de modelos. Es un número entre 0 y 100, y depende en gran medida del servidor de modelos, el modelo, el acelerador y las características del tráfico entrante. Puedes determinar este valor objetivo de forma experimental mediante pruebas de carga y trazar un gráfico de capacidad de procesamiento en comparación con la latencia. Selecciona una combinación de rendimiento y latencia elegidas del gráfico y usa el valorKV-Cache Utilization
correspondiente como objetivo de HPA. Debes ajustar y supervisar este valor de cerca para lograr los resultados de precio y rendimiento que elijas. Puedes usar las recomendaciones de inferencia de GKE para determinar este valor automáticamente.
¿Qué sigue?
- Obtén más información sobre GKE Inference Gateway.
- Obtén información para implementar la puerta de enlace de inferencia de GKE.
- Obtén información sobre las operaciones de lanzamiento de la puerta de enlace de inferencia de GKE.
- Obtén más información sobre la publicación con GKE Inference Gateway.