Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
A differenza dei
flussi di lavoro standard che creano un'istanza
di una risorsa modello di flusso di lavoro creata in precedenza, i flussi di lavoro incorporati utilizzano un
file YAML
o una definizione di WorkflowTemplate
incorporata per eseguire un flusso di lavoro.
Creazione ed esecuzione di un flusso di lavoro in linea
Al momento, la creazione di flussi di lavoro in linea non è supportata nella console Google Cloud. I modelli di flusso di lavoro e i flussi di lavoro con istanze create possono essere visualizzati nella pagina Dataproc Flui di lavoro.
import("context""fmt""io"dataproc"cloud.google.com/go/dataproc/apiv1""cloud.google.com/go/dataproc/apiv1/dataprocpb""google.golang.org/api/option")funcinstantiateInlineWorkflowTemplate(wio.Writer,projectID,regionstring)error{// projectID := "your-project-id"// region := "us-central1"ctx:=context.Background()// Create the cluster client.endpoint:=region+"-dataproc.googleapis.com:443"workflowTemplateClient,err:=dataproc.NewWorkflowTemplateClient(ctx,option.WithEndpoint(endpoint))iferr!=nil{returnfmt.Errorf("dataproc.NewWorkflowTemplateClient: %w",err)}deferworkflowTemplateClient.Close()// Create jobs for the workflow.teragenJob:=&dataprocpb.OrderedJob{JobType:&dataprocpb.OrderedJob_HadoopJob{HadoopJob:&dataprocpb.HadoopJob{Driver:&dataprocpb.HadoopJob_MainJarFileUri{MainJarFileUri:"file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",},Args:[]string{"teragen","1000","hdfs:///gen/",},},},StepId:"teragen",}terasortJob:=&dataprocpb.OrderedJob{JobType:&dataprocpb.OrderedJob_HadoopJob{HadoopJob:&dataprocpb.HadoopJob{Driver:&dataprocpb.HadoopJob_MainJarFileUri{MainJarFileUri:"file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar",},Args:[]string{"terasort","hdfs:///gen/","hdfs:///sort/",},},},StepId:"terasort",PrerequisiteStepIds:[]string{"teragen",},}// Create the cluster placement.clusterPlacement:=&dataprocpb.WorkflowTemplatePlacement{Placement:&dataprocpb.WorkflowTemplatePlacement_ManagedCluster{ManagedCluster:&dataprocpb.ManagedCluster{ClusterName:"my-managed-cluster",Config:&dataprocpb.ClusterConfig{GceClusterConfig:&dataprocpb.GceClusterConfig{// Leave "ZoneUri" empty for "Auto Zone Placement"// ZoneUri: ""ZoneUri:"us-central1-a",},},},},}// Create the Instantiate Inline Workflow Template Request.req:=&dataprocpb.InstantiateInlineWorkflowTemplateRequest{Parent:fmt.Sprintf("projects/%s/regions/%s",projectID,region),Template:&dataprocpb.WorkflowTemplate{Jobs:[]*dataprocpb.OrderedJob{teragenJob,terasortJob,},Placement:clusterPlacement,},}// Create the cluster.op,err:=workflowTemplateClient.InstantiateInlineWorkflowTemplate(ctx,req)iferr!=nil{returnfmt.Errorf("InstantiateInlineWorkflowTemplate: %w",err)}iferr:=op.Wait(ctx);err!=nil{returnfmt.Errorf("InstantiateInlineWorkflowTemplate.Wait: %w",err)}// Output a success message.fmt.Fprintf(w,"Workflow created successfully.")returnnil}
importcom.google.api.gax.longrunning.OperationFuture;importcom.google.cloud.dataproc.v1.ClusterConfig;importcom.google.cloud.dataproc.v1.GceClusterConfig;importcom.google.cloud.dataproc.v1.HadoopJob;importcom.google.cloud.dataproc.v1.ManagedCluster;importcom.google.cloud.dataproc.v1.OrderedJob;importcom.google.cloud.dataproc.v1.RegionName;importcom.google.cloud.dataproc.v1.WorkflowMetadata;importcom.google.cloud.dataproc.v1.WorkflowTemplate;importcom.google.cloud.dataproc.v1.WorkflowTemplatePlacement;importcom.google.cloud.dataproc.v1.WorkflowTemplateServiceClient;importcom.google.cloud.dataproc.v1.WorkflowTemplateServiceSettings;importcom.google.protobuf.Empty;importjava.io.IOException;importjava.util.concurrent.ExecutionException;publicclassInstantiateInlineWorkflowTemplate{publicstaticvoidinstantiateInlineWorkflowTemplate()throwsIOException,InterruptedException{// TODO(developer): Replace these variables before running the sample.StringprojectId="your-project-id";Stringregion="your-project-region";instantiateInlineWorkflowTemplate(projectId,region);}publicstaticvoidinstantiateInlineWorkflowTemplate(StringprojectId,Stringregion)throwsIOException,InterruptedException{StringmyEndpoint=String.format("%s-dataproc.googleapis.com:443",region);// Configure the settings for the workflow template service client.WorkflowTemplateServiceSettingsworkflowTemplateServiceSettings=WorkflowTemplateServiceSettings.newBuilder().setEndpoint(myEndpoint).build();// Create a workflow template service client with the configured settings. The client only// needs to be created once and can be reused for multiple requests. Using a try-with-resources// closes the client, but this can also be done manually with the .close() method.try(WorkflowTemplateServiceClientworkflowTemplateServiceClient=WorkflowTemplateServiceClient.create(workflowTemplateServiceSettings)){// Configure the jobs within the workflow.HadoopJobteragenHadoopJob=HadoopJob.newBuilder().setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar").addArgs("teragen").addArgs("1000").addArgs("hdfs:///gen/").build();OrderedJobteragen=OrderedJob.newBuilder().setHadoopJob(teragenHadoopJob).setStepId("teragen").build();HadoopJobterasortHadoopJob=HadoopJob.newBuilder().setMainJarFileUri("file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar").addArgs("terasort").addArgs("hdfs:///gen/").addArgs("hdfs:///sort/").build();OrderedJobterasort=OrderedJob.newBuilder().setHadoopJob(terasortHadoopJob).addPrerequisiteStepIds("teragen").setStepId("terasort").build();// Configure the cluster placement for the workflow.// Leave "ZoneUri" empty for "Auto Zone Placement".// GceClusterConfig gceClusterConfig =// GceClusterConfig.newBuilder().setZoneUri("").build();GceClusterConfiggceClusterConfig=GceClusterConfig.newBuilder().setZoneUri("us-central1-a").build();ClusterConfigclusterConfig=ClusterConfig.newBuilder().setGceClusterConfig(gceClusterConfig).build();ManagedClustermanagedCluster=ManagedCluster.newBuilder().setClusterName("my-managed-cluster").setConfig(clusterConfig).build();WorkflowTemplatePlacementworkflowTemplatePlacement=WorkflowTemplatePlacement.newBuilder().setManagedCluster(managedCluster).build();// Create the inline workflow template.WorkflowTemplateworkflowTemplate=WorkflowTemplate.newBuilder().addJobs(teragen).addJobs(terasort).setPlacement(workflowTemplatePlacement).build();// Submit the instantiated inline workflow template request.Stringparent=RegionName.format(projectId,region);OperationFuture<Empty,WorkflowMetadata>instantiateInlineWorkflowTemplateAsync=workflowTemplateServiceClient.instantiateInlineWorkflowTemplateAsync(parent,workflowTemplate);instantiateInlineWorkflowTemplateAsync.get();// Print out a success message.System.out.printf("Workflow ran successfully.");}catch(ExecutionExceptione){System.err.println(String.format("Error running workflow: %s ",e.getMessage()));}}}
constdataproc=require('@google-cloud/dataproc');// TODO(developer): Uncomment and set the following variables// projectId = 'YOUR_PROJECT_ID'// region = 'YOUR_REGION'// Create a client with the endpoint set to the desired regionconstclient=newdataproc.v1.WorkflowTemplateServiceClient({apiEndpoint:`${region}-dataproc.googleapis.com`,projectId:projectId,});asyncfunctioninstantiateInlineWorkflowTemplate(){// Create the formatted parent.constparent=client.regionPath(projectId,region);// Create the templateconsttemplate={jobs:[{hadoopJob:{mainJarFileUri:'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',args:['teragen','1000','hdfs:///gen/'],},stepId:'teragen',},{hadoopJob:{mainJarFileUri:'file:///usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar',args:['terasort','hdfs:///gen/','hdfs:///sort/'],},stepId:'terasort',prerequisiteStepIds:['teragen'],},],placement:{managedCluster:{clusterName:'my-managed-cluster',config:{gceClusterConfig:{// Leave 'zoneUri' empty for 'Auto Zone Placement'// zoneUri: ''zoneUri:'us-central1-a',},},},},};constrequest={parent:parent,template:template,};// Submit the request to instantiate the workflow from an inline template.const[operation]=awaitclient.instantiateInlineWorkflowTemplate(request);awaitoperation.promise();// Output a success messageconsole.log('Workflow ran successfully.');
fromgoogle.cloudimportdataproc_v1asdataprocdefinstantiate_inline_workflow_template(project_id,region):"""This sample walks a user through submitting a workflow for a Cloud Dataproc using the Python client library. Args: project_id (string): Project to use for running the workflow. region (string): Region where the workflow resources should live. """# Create a client with the endpoint set to the desired region.workflow_template_client=dataproc.WorkflowTemplateServiceClient(client_options={"api_endpoint":f"{region}-dataproc.googleapis.com:443"})parent=f"projects/{project_id}/regions/{region}"template={"jobs":[{"hadoop_job":{"main_jar_file_uri":"file:///usr/lib/hadoop-mapreduce/""hadoop-mapreduce-examples.jar","args":["teragen","1000","hdfs:///gen/"],},"step_id":"teragen",},{"hadoop_job":{"main_jar_file_uri":"file:///usr/lib/hadoop-mapreduce/""hadoop-mapreduce-examples.jar","args":["terasort","hdfs:///gen/","hdfs:///sort/"],},"step_id":"terasort","prerequisite_step_ids":["teragen"],},],"placement":{"managed_cluster":{"cluster_name":"my-managed-cluster","config":{"gce_cluster_config":{# Leave 'zone_uri' empty for 'Auto Zone Placement'# 'zone_uri': ''"zone_uri":"us-central1-a"}},}},}# Submit the request to instantiate the workflow from an inline template.operation=workflow_template_client.instantiate_inline_workflow_template(request={"parent":parent,"template":template})operation.result()# Output a success message.print("Workflow ran successfully.")
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-03-25 UTC."],[[["Inline workflows utilize a YAML file or an embedded WorkflowTemplate definition to run a workflow, as opposed to standard workflows that use a pre-existing template resource."],["Inline workflows do not support the use of parameters, meaning parameters cannot be passed to them."],["You can instantiate an inline workflow using `gcloud` CLI or through REST API requests, which requires a defined JSON request body with the specified jobs and placement."],["Instantiating inline workflows can also be done through code using various client libraries such as Go, Java, Node.js, and Python."],["The Google Cloud console does not currently support the direct creation of inline workflows, but you can view workflow templates and instantiated workflows in the console."]]],[]]