Attaching GPUs to clusters

Dataproc provides the ability for graphics processing units (GPUs) to be attached to the master and worker Compute Engine nodes in a Dataproc cluster. You can use these GPUs to accelerate specific workloads on your instances, such as machine learning and data processing.

For more information about what you can do with GPUs and what types of GPU hardware are available, read GPUs on Compute Engine.

Before you begin

  • GPUs require special drivers and software. These items are not pre-installed on Dataproc clusters.
  • Read about GPU pricing on Compute Engine to understand the cost to use GPUs in your instances.
  • Read about restrictions for instances with GPUs to learn how these instances function differently from non-GPU instances.
  • Check the quotas page for your project to ensure that you have sufficient GPU quota (NVIDIA_T4_GPUS, NVIDIA_P100_GPUS, or NVIDIA_V100_GPUS) available in your project. If GPUs are not listed on the quotas page or you require additional GPU quota, request a quota increase.

Types of GPUs

Dataproc nodes support the following GPU types. You must specify GPU type when attaching GPUs to your Dataproc cluster.

  • nvidia-tesla-l4 - NVIDIA® Tesla® L4
  • nvidia-tesla-a100 - NVIDIA® Tesla® A100
  • nvidia-tesla-p100 - NVIDIA® Tesla® P100
  • nvidia-tesla-v100 - NVIDIA® Tesla® V100
  • nvidia-tesla-p4 - NVIDIA® Tesla® P4
  • nvidia-tesla-t4 - NVIDIA® Tesla® T4
  • nvidia-tesla-p100-vws - NVIDIA® Tesla® P100 Virtual Workstations
  • nvidia-tesla-p4-vws - NVIDIA® Tesla® P4 Virtual Workstations
  • nvidia-tesla-t4-vws - NVIDIA® Tesla® T4 Virtual Workstations

Attaching GPUs to clusters

gcloud

Attach GPUs to the master and primary and secondary worker nodes in a Dataproc cluster when creating the cluster using the ‑‑master-accelerator, ‑‑worker-accelerator, and ‑‑secondary-worker-accelerator flags. These flags take the following two values:

  1. the type of GPU to attach to a node, and
  2. the number of GPUs to attach to the node.

The type of GPU is required, and the number of GPUs is optional (the default is 1 GPU).

Example:

gcloud dataproc clusters create cluster-name \
    --region=region \
    --master-accelerator type=nvidia-tesla-t4 \
    --worker-accelerator type=nvidia-tesla-t4,count=4 \
    --secondary-worker-accelerator type=nvidia-tesla-t4,count=4 \
    ... other flags

To use GPUs in your cluster, you must install GPU drivers.

REST API

Attach GPUs to the master and primary and secondary worker nodes in a Dataproc cluster by filling in the InstanceGroupConfig.AcceleratorConfig acceleratorTypeUri and acceleratorCount fields as part of the cluster.create API request.

Console

Click CPU PLATFORM AND GPU→GPUs→ADD GPU in the master and worker nodes sections of the Configure nodes panel on the Create a cluster page in the Google Cloud console to specify the number of GPUs and GPU type for the nodes.

Installing GPU drivers

GPU drivers are required to utilize any GPUs attached to Dataproc nodes. You can install GPU drivers by following the instructions for this initialization action, which is listed below.

#!/bin/bash
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS-IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This script installs NVIDIA GPU drivers and collects GPU utilization metrics.

set -euxo pipefail

function os_id()       { grep '^ID=' /etc/os-release | cut -d= -f2 | xargs ; }
function os_version()  { grep '^VERSION_ID=' /etc/os-release | cut -d= -f2 | xargs ; }
function os_codename() { grep '^VERSION_CODENAME=' /etc/os-release | cut -d= -f2 | xargs ; }
function is_rocky()    { [[ "$(os_id)" == 'rocky' ]] ; }
function is_rocky8()   { is_rocky && [[ "$(os_version)" == '8'* ]] ; }
function is_rocky9()   { is_rocky && [[ "$(os_version)" == '9'* ]] ; }
function is_ubuntu()   { [[ "$(os_id)" == 'ubuntu' ]] ; }
function is_ubuntu18() { is_ubuntu && [[ "$(os_version)" == '18.04'* ]] ; }
function is_ubuntu20() { is_ubuntu && [[ "$(os_version)" == '20.04'* ]] ; }
function is_ubuntu22() { is_ubuntu && [[ "$(os_version)" == '22.04'* ]] ; }
function is_debian()   { [[ "$(os_id)" == 'debian' ]] ; }
function is_debian10() { is_debian && [[ "$(os_version)" == '10'* ]] ; }
function is_debian11() { is_debian && [[ "$(os_version)" == '11'* ]] ; }
function is_debian12() { is_debian && [[ "$(os_version)" == '12'* ]] ; }
function os_vercat() { if   is_ubuntu ; then os_version | sed -e 's/[^0-9]//g'
                       elif is_rocky  ; then os_version | sed -e 's/[^0-9].*$//g'
                                        else os_version ; fi ; }

function remove_old_backports {
  if is_debian12 ; then return ; fi
  # This script uses 'apt-get update' and is therefore potentially dependent on
  # backports repositories which have been archived.  In order to mitigate this
  # problem, we will use archive.debian.org for the oldoldstable repo

  # https://github.com/GoogleCloudDataproc/initialization-actions/issues/1157
  debdists="https://deb.debian.org/debian/dists"
  oldoldstable=$(curl -s "${debdists}/oldoldstable/Release" | awk '/^Codename/ {print $2}');
  oldstable=$(   curl -s "${debdists}/oldstable/Release"    | awk '/^Codename/ {print $2}');
  stable=$(      curl -s "${debdists}/stable/Release"       | awk '/^Codename/ {print $2}');

  matched_files=( $(test -d /etc/apt && grep -rsil '\-backports' /etc/apt/sources.list*||:) )

  for filename in "${matched_files[@]}"; do
    # Fetch from archive.debian.org for ${oldoldstable}-backports
    perl -pi -e "s{^(deb[^\s]*) https?://[^/]+/debian ${oldoldstable}-backports }
                  {\$1 https://archive.debian.org/debian ${oldoldstable}-backports }g" "${filename}"
  done
}

function compare_versions_lte {
  [ "$1" = "$(echo -e "$1\n$2" | sort -V | head -n1)" ]
}

function compare_versions_lt() {
  [ "$1" = "$2" ] && return 1 || compare_versions_lte $1 $2
}

function get_metadata_attribute() {
  local -r attribute_name=$1
  local -r default_value="${2:-}"
  /usr/share/google/get_metadata_value "attributes/${attribute_name}" || echo -n "${default_value}"
}

OS_NAME=$(lsb_release -is | tr '[:upper:]' '[:lower:]')
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
readonly OS_NAME

# node role
ROLE="$(get_metadata_attribute dataproc-role)"
readonly ROLE

# CUDA version and Driver version
# https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
readonly -A DRIVER_FOR_CUDA=(
          [11.8]="525.147.05" [12.1]="530.30.02"  [12.4]="550.54.14"
          [12.5]="555.42.06"  [12.6]="560.28.03"
)
readonly -A CUDNN_FOR_CUDA=(
          [11.8]="8.6.0.163"  [12.1]="8.9.0"      [12.4]="9.1.0.70"
          [12.5]="9.2.1.18"
)
readonly -A NCCL_FOR_CUDA=(
          [11.8]="2.15.5"     [12.1]="2.17.1"     [12.4]="2.21.5"
          [12.5]="2.22.3"
)
readonly -A CUDA_SUBVER=(
          [11.8]="11.8.0"     [12.1]="12.1.0"     [12.4]="12.4.1"
          [12.5]="12.5.1"
)

RAPIDS_RUNTIME=$(get_metadata_attribute 'rapids-runtime' 'SPARK')
readonly DEFAULT_CUDA_VERSION='12.4'
readonly CUDA_VERSION=$(get_metadata_attribute 'cuda-version' "${DEFAULT_CUDA_VERSION}")
readonly CUDA_FULL_VERSION="${CUDA_SUBVER["${CUDA_VERSION}"]}"

function is_cuda12() { [[ "${CUDA_VERSION%%.*}" == "12" ]] ; }
function is_cuda11() { [[ "${CUDA_VERSION%%.*}" == "11" ]] ; }
readonly DEFAULT_DRIVER=${DRIVER_FOR_CUDA["${CUDA_VERSION}"]}
DRIVER_VERSION=$(get_metadata_attribute 'gpu-driver-version' "${DEFAULT_DRIVER}")
if is_debian11 || is_ubuntu22 || is_ubuntu20 ; then DRIVER_VERSION="560.28.03" ; fi
if is_ubuntu20 && is_cuda11 ; then DRIVER_VERSION="535.183.06" ; fi

readonly DRIVER_VERSION
readonly DRIVER=${DRIVER_VERSION%%.*}

# Parameters for NVIDIA-provided CUDNN library
readonly DEFAULT_CUDNN_VERSION=${CUDNN_FOR_CUDA["${CUDA_VERSION}"]}
CUDNN_VERSION=$(get_metadata_attribute 'cudnn-version' "${DEFAULT_CUDNN_VERSION}")
function is_cudnn8() { [[ "${CUDNN_VERSION%%.*}" == "8" ]] ; }
function is_cudnn9() { [[ "${CUDNN_VERSION%%.*}" == "9" ]] ; }
if is_rocky \
   && (compare_versions_lte "${CUDNN_VERSION}" "8.0.5.39") ; then
  CUDNN_VERSION="8.0.5.39"
elif (is_ubuntu20 || is_ubuntu22 || is_debian12) && is_cudnn8 ; then
  # cuDNN v8 is not distribution for ubuntu20+, debian12
  CUDNN_VERSION="9.1.0.70"

elif (is_ubuntu18 || is_debian10 || is_debian11) && is_cudnn9 ; then
  # cuDNN v9 is not distributed for ubuntu18, debian10, debian11 ; fall back to 8
  CUDNN_VERSION="8.8.0.121"
fi
readonly CUDNN_VERSION

readonly DEFAULT_NCCL_VERSION=${NCCL_FOR_CUDA["${CUDA_VERSION}"]}
readonly NCCL_VERSION=$(get_metadata_attribute 'nccl-version' ${DEFAULT_NCCL_VERSION})

# Parameters for NVIDIA-provided Debian GPU driver
readonly DEFAULT_USERSPACE_URL="https://download.nvidia.com/XFree86/Linux-x86_64/${DRIVER_VERSION}/NVIDIA-Linux-x86_64-${DRIVER_VERSION}.run"

readonly USERSPACE_URL=$(get_metadata_attribute 'gpu-driver-url' "${DEFAULT_USERSPACE_URL}")

# Short name for urls
if is_ubuntu22  ; then
    # at the time of writing 20240721 there is no ubuntu2204 in the index of repos at
    # https://developer.download.nvidia.com/compute/machine-learning/repos/
    # use packages from previous release until such time as nvidia
    # release ubuntu2204 builds

    nccl_shortname="ubuntu2004"
    shortname="$(os_id)$(os_vercat)"
elif is_rocky9 ; then
    # use packages from previous release until such time as nvidia
    # release rhel9 builds

    nccl_shortname="rhel8"
    shortname="rhel9"
elif is_rocky ; then
    shortname="$(os_id | sed -e 's/rocky/rhel/')$(os_vercat)"
    nccl_shortname="${shortname}"
else
    shortname="$(os_id)$(os_vercat)"
    nccl_shortname="${shortname}"
fi

# Parameters for NVIDIA-provided package repositories
readonly NVIDIA_BASE_DL_URL='https://developer.download.nvidia.com/compute'
readonly NVIDIA_REPO_URL="${NVIDIA_BASE_DL_URL}/cuda/repos/${shortname}/x86_64"

# Parameters for NVIDIA-provided NCCL library
readonly DEFAULT_NCCL_REPO_URL="${NVIDIA_BASE_DL_URL}/machine-learning/repos/${nccl_shortname}/x86_64/nvidia-machine-learning-repo-${nccl_shortname}_1.0.0-1_amd64.deb"
NCCL_REPO_URL=$(get_metadata_attribute 'nccl-repo-url' "${DEFAULT_NCCL_REPO_URL}")
readonly NCCL_REPO_URL
readonly NCCL_REPO_KEY="${NVIDIA_BASE_DL_URL}/machine-learning/repos/${nccl_shortname}/x86_64/7fa2af80.pub" # 3bf863cc.pub

readonly -A DEFAULT_NVIDIA_CUDA_URLS=(
  [11.8]="${NVIDIA_BASE_DL_URL}/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
  [12.1]="${NVIDIA_BASE_DL_URL}/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
  [12.4]="${NVIDIA_BASE_DL_URL}/cuda/12.4.0/local_installers/cuda_12.4.0_550.54.14_linux.run"
)
readonly DEFAULT_NVIDIA_CUDA_URL=${DEFAULT_NVIDIA_CUDA_URLS["${CUDA_VERSION}"]}
NVIDIA_CUDA_URL=$(get_metadata_attribute 'cuda-url' "${DEFAULT_NVIDIA_CUDA_URL}")
readonly NVIDIA_CUDA_URL

# Parameter for NVIDIA-provided Rocky Linux GPU driver
readonly NVIDIA_ROCKY_REPO_URL="${NVIDIA_REPO_URL}/cuda-${shortname}.repo"

CUDNN_TARBALL="cudnn-${CUDA_VERSION}-linux-x64-v${CUDNN_VERSION}.tgz"
CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN_VERSION%.*}/${CUDNN_TARBALL}"
if ( compare_versions_lte "8.3.1.22" "${CUDNN_VERSION}" ); then
  CUDNN_TARBALL="cudnn-linux-x86_64-${CUDNN_VERSION}_cuda${CUDA_VERSION%.*}-archive.tar.xz"
  if ( compare_versions_lte "${CUDNN_VERSION}" "8.4.1.50" ); then
    CUDNN_TARBALL="cudnn-linux-x86_64-${CUDNN_VERSION}_cuda${CUDA_VERSION}-archive.tar.xz"
  fi
  CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN_VERSION%.*}/local_installers/${CUDA_VERSION}/${CUDNN_TARBALL}"
fi
if ( compare_versions_lte "12.0" "${CUDA_VERSION}" ); then
  # When cuda version is greater than 12.0
  CUDNN_TARBALL_URL="${NVIDIA_BASE_DL_URL}/cudnn/redist/cudnn/linux-x86_64/cudnn-linux-x86_64-9.2.0.82_cuda12-archive.tar.xz"
fi
readonly CUDNN_TARBALL
readonly CUDNN_TARBALL_URL

# Whether to install NVIDIA-provided or OS-provided GPU driver
GPU_DRIVER_PROVIDER=$(get_metadata_attribute 'gpu-driver-provider' 'NVIDIA')
readonly GPU_DRIVER_PROVIDER

# Stackdriver GPU agent parameters
readonly GPU_AGENT_REPO_URL='https://raw.githubusercontent.com/GoogleCloudPlatform/ml-on-gcp/master/dlvm/gcp-gpu-utilization-metrics'
# Whether to install GPU monitoring agent that sends GPU metrics to Stackdriver
INSTALL_GPU_AGENT=$(get_metadata_attribute 'install-gpu-agent' 'false')
readonly INSTALL_GPU_AGENT

# Dataproc configurations
readonly HADOOP_CONF_DIR='/etc/hadoop/conf'
readonly HIVE_CONF_DIR='/etc/hive/conf'
readonly SPARK_CONF_DIR='/etc/spark/conf'

NVIDIA_SMI_PATH='/usr/bin'
MIG_MAJOR_CAPS=0
IS_MIG_ENABLED=0

function execute_with_retries() {
  local -r cmd="$*"
  for ((i = 0; i < 3; i++)); do
    if eval "$cmd"; then return 0 ; fi
    sleep 5
  done
  return 1
}

CUDA_KEYRING_PKG_INSTALLED="0"
function install_cuda_keyring_pkg() {
  if [[ "${CUDA_KEYRING_PKG_INSTALLED}" == "1" ]]; then return ; fi
  local kr_ver=1.1
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${NVIDIA_REPO_URL}/cuda-keyring_${kr_ver}-1_all.deb" \
    -o /tmp/cuda-keyring.deb
  dpkg -i "/tmp/cuda-keyring.deb"
  rm -f "/tmp/cuda-keyring.deb"
  CUDA_KEYRING_PKG_INSTALLED="1"
}

function uninstall_cuda_keyring_pkg() {
  apt-get purge -yq cuda-keyring
  CUDA_KEYRING_PKG_INSTALLED="0"
}

CUDA_LOCAL_REPO_INSTALLED="0"
function install_local_cuda_repo() {
  if [[ "${CUDA_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  CUDA_LOCAL_REPO_INSTALLED="1"
  pkgname="cuda-repo-${shortname}-${CUDA_VERSION//./-}-local"
  CUDA_LOCAL_REPO_PKG_NAME="${pkgname}"
  readonly LOCAL_INSTALLER_DEB="${pkgname}_${CUDA_FULL_VERSION}-${DRIVER_VERSION}-1_amd64.deb"
  readonly LOCAL_DEB_URL="${NVIDIA_BASE_DL_URL}/cuda/${CUDA_FULL_VERSION}/local_installers/${LOCAL_INSTALLER_DEB}"
  readonly DIST_KEYRING_DIR="/var/${pkgname}"

  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
    "${LOCAL_DEB_URL}" -o "/tmp/${LOCAL_INSTALLER_DEB}"

  dpkg -i "/tmp/${LOCAL_INSTALLER_DEB}"
  rm "/tmp/${LOCAL_INSTALLER_DEB}"
  cp ${DIST_KEYRING_DIR}/cuda-*-keyring.gpg /usr/share/keyrings/

  if is_ubuntu ; then
    curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
      "${NVIDIA_REPO_URL}/cuda-${shortname}.pin" \
      -o /etc/apt/preferences.d/cuda-repository-pin-600
  fi
}
function uninstall_local_cuda_repo(){
  apt-get purge -yq "${CUDA_LOCAL_REPO_PKG_NAME}"
  CUDA_LOCAL_REPO_INSTALLED="0"
}

CUDNN_LOCAL_REPO_INSTALLED="0"
CUDNN_PKG_NAME=""
function install_local_cudnn_repo() {
  if [[ "${CUDNN_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  pkgname="cudnn-local-repo-${shortname}-${CUDNN}"
  CUDNN_PKG_NAME="${pkgname}"
  local_deb_fn="${pkgname}_1.0-1_amd64.deb"
  local_deb_url="${NVIDIA_BASE_DL_URL}/cudnn/${CUDNN}/local_installers/${local_deb_fn}"

  # ${NVIDIA_BASE_DL_URL}/redist/cudnn/v8.6.0/local_installers/11.8/cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz
  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
    "${local_deb_url}" -o /tmp/local-installer.deb

  dpkg -i /tmp/local-installer.deb

  rm -f /tmp/local-installer.deb

  cp /var/cudnn-local-repo-*-${CUDNN}*/cudnn-local-*-keyring.gpg /usr/share/keyrings

  CUDNN_LOCAL_REPO_INSTALLED="1"
}

function uninstall_local_cudnn_repo() {
  apt-get purge -yq "${CUDNN_PKG_NAME}"
  CUDNN_LOCAL_REPO_INSTALLED="0"
}

CUDNN8_LOCAL_REPO_INSTALLED="0"
CUDNN8_PKG_NAME=""
function install_local_cudnn8_repo() {
  if [[ "${CUDNN8_LOCAL_REPO_INSTALLED}" == "1" ]]; then return ; fi
  if   is_ubuntu ; then cudnn8_shortname="ubuntu2004"
  elif is_debian ; then cudnn8_shortname="debian11"
  else return 0 ; fi
  if   is_cuda12 ; then CUDNN8_CUDA_VER=12.0
  elif is_cuda11 ; then CUDNN8_CUDA_VER=11.8
  else CUDNN8_CUDA_VER="${CUDA_VERSION}" ; fi
  cudnn_pkg_version="${CUDNN_VERSION}-1+cuda${CUDNN8_CUDA_VER}"

  pkgname="cudnn-local-repo-${cudnn8_shortname}-${CUDNN_VERSION}"
  CUDNN8_PKG_NAME="${pkgname}"

  local_deb_fn="${pkgname}_1.0-1_amd64.deb"
  local_deb_url="${NVIDIA_BASE_DL_URL}/redist/cudnn/v${CUDNN}/local_installers/${CUDNN8_CUDA_VER}/${local_deb_fn}"
  curl -fsSL --retry-connrefused --retry 3 --retry-max-time 5 \
      "${local_deb_url}" -o "${local_deb_fn}"

  dpkg -i "${local_deb_fn}"

  rm -f "${local_deb_fn}"

  cp /var/cudnn-local-repo-*-${CUDNN}*/cudnn-local-*-keyring.gpg /usr/share/keyrings
  CUDNN8_LOCAL_REPO_INSTALLED="1"
}

function uninstall_local_cudnn8_repo() {
  apt-get purge -yq "${CUDNN8_PKG_NAME}"
  CUDNN8_LOCAL_REPO_INSTALLED="0"
}

function install_nvidia_nccl() {
  local -r nccl_version="${NCCL_VERSION}-1+cuda${CUDA_VERSION}"

  if is_rocky ; then
    time execute_with_retries \
      "dnf -y -q install" \
        "libnccl-${nccl_version} libnccl-devel-${nccl_version} libnccl-static-${nccl_version}"
  elif is_ubuntu ; then
    install_cuda_keyring_pkg

    apt-get update -qq

    if is_ubuntu18 ; then
      time execute_with_retries \
        "apt-get install -q -y " \
          "libnccl2 libnccl-dev"
    else
      time execute_with_retries \
        "apt-get install -q -y " \
          "libnccl2=${nccl_version} libnccl-dev=${nccl_version}"
    fi
  else
    echo "Unsupported OS: '${OS_NAME}'"
    # NB: this tarball is 10GB in size, but can be used to install NCCL on non-ubuntu systems
    # wget https://developer.download.nvidia.com/hpc-sdk/24.7/nvhpc_2024_247_Linux_x86_64_cuda_multi.tar.gz
    # tar xpzf nvhpc_2024_247_Linux_x86_64_cuda_multi.tar.gz
    # nvhpc_2024_247_Linux_x86_64_cuda_multi/install
    return
  fi
}

function is_src_nvidia() { [[ "${GPU_DRIVER_PROVIDER}" == "NVIDIA" ]] ; }
function is_src_os()     { [[ "${GPU_DRIVER_PROVIDER}" == "OS" ]] ; }

function install_nvidia_cudnn() {
  local major_version
  major_version="${CUDNN_VERSION%%.*}"
  local cudnn_pkg_version
  cudnn_pkg_version="${CUDNN_VERSION}-1+cuda${CUDA_VERSION}"

  if is_rocky ; then
    if is_cudnn8 ; then
      execute_with_retries "dnf -y -q install" \
        "libcudnn${major_version}" \
        "libcudnn${major_version}-devel"
    elif is_cudnn9 ; then
      execute_with_retries "dnf -y -q install" \
        "libcudnn9-static-cuda-${CUDA_VERSION%%.*}" \
        "libcudnn9-devel-cuda-${CUDA_VERSION%%.*}"
    else
      echo "Unsupported cudnn version: '${major_version}'"
    fi
  elif is_debian || is_ubuntu; then
    if is_debian12 && is_src_os ; then
      apt-get -y install nvidia-cudnn
    else
      local CUDNN="${CUDNN_VERSION%.*}"
      if is_cudnn8 ; then
        install_local_cudnn8_repo

        apt-get update -qq

        execute_with_retries \
          apt-get -y install --no-install-recommends \
            "libcudnn8=${cudnn_pkg_version}" \
            "libcudnn8-dev=${cudnn_pkg_version}"
      elif is_cudnn9 ; then
	install_cuda_keyring_pkg

        apt-get update -qq

        execute_with_retries \
          apt-get -y install --no-install-recommends \
          "libcudnn9-cuda-${CUDA_VERSION%%.*}" \
          "libcudnn9-dev-cuda-${CUDA_VERSION%%.*}" \
          "libcudnn9-static-cuda-${CUDA_VERSION%%.*}"
      else
        echo "Unsupported cudnn version: [${CUDNN_VERSION}]"
      fi
    fi
  elif is_ubuntu ; then
    local -a packages
    packages=(
      "libcudnn${major_version}=${cudnn_pkg_version}"
      "libcudnn${major_version}-dev=${cudnn_pkg_version}")
    execute_with_retries \
      "apt-get install -q -y --no-install-recommends ${packages[*]}"
  else
    echo "Unsupported OS: '${OS_NAME}'"
    exit 1
  fi

  ldconfig

  echo "NVIDIA cuDNN successfully installed for ${OS_NAME}."
}

CA_TMPDIR="$(mktemp -u -d -p /run/tmp -t ca_dir-XXXX)"
PSN="$(get_metadata_attribute private_secret_name)"
readonly PSN
function configure_dkms_certs() {
  if [[ -z "${PSN}" ]]; then
      echo "No signing secret provided.  skipping";
      return 0
  fi

  mkdir -p "${CA_TMPDIR}"

  # If the private key exists, verify it
  if [[ -f "${CA_TMPDIR}/db.rsa" ]]; then
    echo "Private key material exists"

    local expected_modulus_md5sum
    expected_modulus_md5sum=$(get_metadata_attribute cert_modulus_md5sum)
    if [[ -n "${expected_modulus_md5sum}" ]]; then
      modulus_md5sum="${expected_modulus_md5sum}"
    else
      modulus_md5sum="bd40cf5905c7bba4225d330136fdbfd3"
    fi

    # Verify that cert md5sum matches expected md5sum
    if [[ "${modulus_md5sum}" != "$(openssl rsa -noout -modulus -in \"${CA_TMPDIR}/db.rsa\" | openssl md5 | awk '{print $2}')" ]]; then
        echo "unmatched rsa key modulus"
    fi
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/dkms/mok.key

    # Verify that key md5sum matches expected md5sum
    if [[ "${modulus_md5sum}" != "$(openssl x509 -noout -modulus -in /var/lib/dkms/mok.pub | openssl md5 | awk '{print $2}')" ]]; then
        echo "unmatched x509 cert modulus"
    fi

    return
  fi


  # Retrieve cloud secrets keys
  local sig_priv_secret_name
  sig_priv_secret_name="${PSN}"
  local sig_pub_secret_name
  sig_pub_secret_name="$(get_metadata_attribute public_secret_name)"
  local sig_secret_project
  sig_secret_project="$(get_metadata_attribute secret_project)"
  local sig_secret_version
  sig_secret_version="$(get_metadata_attribute secret_version)"

  # If metadata values are not set, do not write mok keys
  if [[ -z "${sig_priv_secret_name}" ]]; then return 0 ; fi

  # Write private material to volatile storage
  gcloud secrets versions access "${sig_secret_version}" \
         --project="${sig_secret_project}" \
         --secret="${sig_priv_secret_name}" \
      | dd status=none of="${CA_TMPDIR}/db.rsa"

  # Write public material to volatile storage
  gcloud secrets versions access "${sig_secret_version}" \
         --project="${sig_secret_project}" \
         --secret="${sig_pub_secret_name}" \
      | base64 --decode \
      | dd status=none of="${CA_TMPDIR}/db.der"

  # symlink private key and copy public cert from volatile storage for DKMS
  if is_ubuntu ; then
    mkdir -p /var/lib/shim-signed/mok
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/shim-signed/mok/MOK.priv
    cp -f "${CA_TMPDIR}/db.der" /var/lib/shim-signed/mok/MOK.der
  else
    mkdir -p /var/lib/dkms/
    ln -sf "${CA_TMPDIR}/db.rsa" /var/lib/dkms/mok.key
    cp -f "${CA_TMPDIR}/db.der" /var/lib/dkms/mok.pub
  fi
}

function clear_dkms_key {
  if [[ -z "${PSN}" ]]; then
      echo "No signing secret provided.  skipping" >&2
      return 0
  fi
  rm -rf "${CA_TMPDIR}" /var/lib/dkms/mok.key /var/lib/shim-signed/mok/MOK.priv
}

function add_contrib_component() {
  if is_debian12 ; then
      # Include in sources file components on which nvidia-kernel-open-dkms depends
      local -r debian_sources="/etc/apt/sources.list.d/debian.sources"
      local components="main contrib"

      sed -i -e "s/Components: .*$/Components: ${components}/" "${debian_sources}"
  elif is_debian ; then
      sed -i -e 's/ main$/ main contrib/' /etc/apt/sources.list
  fi
}

function add_nonfree_components() {
  if is_src_nvidia ; then return; fi
  if is_debian12 ; then
      # Include in sources file components on which nvidia-open-kernel-dkms depends
      local -r debian_sources="/etc/apt/sources.list.d/debian.sources"
      local components="main contrib non-free non-free-firmware"

      sed -i -e "s/Components: .*$/Components: ${components}/" "${debian_sources}"
  elif is_debian ; then
      sed -i -e 's/ main$/ main contrib non-free/' /etc/apt/sources.list
  fi
}

function add_repo_nvidia_container_toolkit() {
  if is_debian || is_ubuntu ; then
      local kr_path=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
      local sources_list_path=/etc/apt/sources.list.d/nvidia-container-toolkit.list
      # https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
      test -f "${kr_path}" ||
        curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
          | gpg --dearmor -o "${kr_path}"

      test -f "${sources_list_path}" ||
        curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
          | perl -pe "s#deb https://#deb [signed-by=${kr_path}] https://#g" \
          | tee "${sources_list_path}"
  fi
}

function add_repo_cuda() {
  if is_debian || is_ubuntu ; then
    local kr_path=/usr/share/keyrings/cuda-archive-keyring.gpg
    local sources_list_path="/etc/apt/sources.list.d/cuda-${shortname}-x86_64.list"
echo "deb [signed-by=${kr_path}] https://developer.download.nvidia.com/compute/cuda/repos/${shortname}/x86_64/ /" \
    | sudo tee "${sources_list_path}"
    curl "${NVIDIA_BASE_DL_URL}/cuda/repos/${shortname}/x86_64/cuda-archive-keyring.gpg" \
      -o "${kr_path}"
  elif is_rocky ; then
    execute_with_retries "dnf config-manager --add-repo ${NVIDIA_ROCKY_REPO_URL}"
    execute_with_retries "dnf clean all"
  fi
}

readonly uname_r=$(uname -r)
function build_driver_from_github() {
  if is_ubuntu ; then
    mok_key=/var/lib/shim-signed/mok/MOK.priv
    mok_der=/var/lib/shim-signed/mok/MOK.der
  else
    mok_key=/var/lib/dkms/mok.key
    mok_der=/var/lib/dkms/mok.pub
  fi
  workdir=/opt/install-nvidia-driver
  mkdir -p "${workdir}"
  pushd "${workdir}"
  test -d "${workdir}/open-gpu-kernel-modules" || {
    tarball_fn="${DRIVER_VERSION}.tar.gz"
    curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
      "https://github.com/NVIDIA/open-gpu-kernel-modules/archive/refs/tags/${tarball_fn}" \
      -o "${tarball_fn}"
    tar xzf "${tarball_fn}"
    mv "open-gpu-kernel-modules-${DRIVER_VERSION}" open-gpu-kernel-modules
  }
  cd open-gpu-kernel-modules

  time make -j$(nproc) modules \
    >  /var/log/open-gpu-kernel-modules-build.log \
    2> /var/log/open-gpu-kernel-modules-build_error.log

  if [[ -n "${PSN}" ]]; then
    configure_dkms_certs
    for module in $(find kernel-open -name '*.ko'); do
      "/lib/modules/${uname_r}/build/scripts/sign-file" sha256 \
      "${mok_key}" \
      "${mok_der}" \
      "${module}"
    done
    clear_dkms_key
  fi

  make modules_install \
    >> /var/log/open-gpu-kernel-modules-build.log \
    2>> /var/log/open-gpu-kernel-modules-build_error.log
  popd
}

function build_driver_from_packages() {
  if is_ubuntu || is_debian ; then
    if [[ -n "$(apt-cache search -n "nvidia-driver-${DRIVER}-server-open")" ]] ; then
      local pkglist=("nvidia-driver-${DRIVER}-server-open") ; else
      local pkglist=("nvidia-driver-${DRIVER}-open") ; fi
    if is_debian ; then
      pkglist=(
        "firmware-nvidia-gsp=${DRIVER_VERSION}-1"
        "nvidia-smi=${DRIVER_VERSION}-1"
        "nvidia-alternative=${DRIVER_VERSION}-1"
        "nvidia-kernel-open-dkms=${DRIVER_VERSION}-1"
        "nvidia-kernel-support=${DRIVER_VERSION}-1"
        "nvidia-modprobe=${DRIVER_VERSION}-1"
        "libnvidia-ml1=${DRIVER_VERSION}-1"
      )
    fi
    add_contrib_component
    apt-get update -qq
    execute_with_retries "apt-get install -y -qq --no-install-recommends dkms"
    configure_dkms_certs
    time execute_with_retries "apt-get install -y -qq --no-install-recommends ${pkglist[@]}"

  elif is_rocky ; then
    configure_dkms_certs
    time execute_with_retries "dnf -y -q module install nvidia-driver:${DRIVER}-open"
  fi
  clear_dkms_key
}

function install_nvidia_userspace_runfile() {
  if test -d /run/nvidia-userspace ; then return ; fi
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${USERSPACE_URL}" -o userspace.run
  time bash "./userspace.run" --no-kernel-modules --silent --install-libglvnd \
    > /dev/null 2>&1
  rm -f userspace.run
  mkdir -p /run/nvidia-userspace
}

function install_cuda_runfile() {
  if test -d /run/nvidia-cuda ; then return ; fi
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${NVIDIA_CUDA_URL}" -o cuda.run
  time bash "./cuda.run" --silent --toolkit --no-opengl-libs
  rm -f cuda.run
  mkdir -p /run/nvidia-cuda
}

function install_cuda_toolkit() {
  local cudatk_package=cuda-toolkit
  if is_debian12 && is_src_os ; then
    cudatk_package="${cudatk_package}=${CUDA_FULL_VERSION}-1"
  elif [[ -n "${CUDA_VERSION}" ]]; then
    cudatk_package="${cudatk_package}-${CUDA_VERSION//./-}"
  fi
  cuda_package="cuda=${CUDA_FULL_VERSION}-1"
  readonly cudatk_package
  if is_ubuntu || is_debian ; then
#    if is_ubuntu ; then execute_with_retries "apt-get install -y -qq --no-install-recommends cuda-drivers-${DRIVER}=${DRIVER_VERSION}-1" ; fi
    time execute_with_retries "apt-get install -y -qq --no-install-recommends ${cuda_package} ${cudatk_package}"
  elif is_rocky ; then
    time execute_with_retries "dnf -y -q install ${cudatk_package}"
  fi
}

function install_drivers_aliases() {
  if ! (is_debian12 || is_debian11) ; then return ; fi
  if (is_debian12 && is_cuda11) && is_src_nvidia ; then return ; fi # don't install on debian 12 / cuda11 with drivers from nvidia
  # Add a modprobe alias to prefer the open kernel modules
  local conffile="/etc/modprobe.d/nvidia-aliases.conf"
  echo -n "" > "${conffile}"
  local prefix
  if   is_src_os     ; then prefix="nvidia-current-open"
  elif is_src_nvidia ; then prefix="nvidia-current" ; fi
  local suffix
  for suffix in uvm peermem modeset drm; do
    echo "alias nvidia-${suffix} ${prefix}-${suffix}" >> "${conffile}"
  done
  echo "alias nvidia ${prefix}" >> "${conffile}"
}

function load_kernel_module() {
  modprobe -r nvidia || echo "unable to unload the nvidia module"
  # for some use cases, the kernel module needs to be removed before first use of nvidia-smi
  for module in nvidia_uvm nvidia_drm nvidia_modeset nvidia ; do
    rmmod ${module} > /dev/null 2>&1 || echo "unable to rmmod ${module}"
  done

  install_drivers_aliases
  depmod -a
  modprobe nvidia
}

# Install NVIDIA GPU driver provided by NVIDIA
function install_nvidia_gpu_driver() {
  if is_debian12 && is_src_os ; then
    add_nonfree_components
    add_repo_nvidia_container_toolkit
    apt-get update -qq
    configure_dkms_certs
    apt-get -yq install \
          nvidia-container-toolkit \
          dkms \
          nvidia-open-kernel-dkms \
          nvidia-open-kernel-support \
          nvidia-smi \
          libglvnd0 \
          libcuda1
    clear_dkms_key
    load_kernel_module
  elif is_ubuntu18 || is_debian10 || (is_debian12 && is_cuda11) ; then

    install_nvidia_userspace_runfile

    build_driver_from_github

    load_kernel_module

    install_cuda_runfile
  elif is_debian || is_ubuntu ; then
    install_cuda_keyring_pkg

    build_driver_from_packages

    load_kernel_module

    install_cuda_toolkit
  elif is_rocky ; then
    add_repo_cuda

    build_driver_from_packages

    load_kernel_module

    install_cuda_toolkit

  else
    echo "Unsupported OS: '${OS_NAME}'"
    exit 1
  fi
  ldconfig
  echo "NVIDIA GPU driver provided by NVIDIA was installed successfully"
}

# Collects 'gpu_utilization' and 'gpu_memory_utilization' metrics
function install_gpu_agent() {
  if ! command -v pip; then
    execute_with_retries "apt-get install -y -qq python-pip"
  fi
  local install_dir=/opt/gpu-utilization-agent
  mkdir -p "${install_dir}"
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${GPU_AGENT_REPO_URL}/requirements.txt" -o "${install_dir}/requirements.txt"
  curl -fsSL --retry-connrefused --retry 10 --retry-max-time 30 \
    "${GPU_AGENT_REPO_URL}/report_gpu_metrics.py" \
    | sed -e 's/-u --format=/--format=/' \
    | dd status=none of="${install_dir}/report_gpu_metrics.py"
  pip install -r "${install_dir}/requirements.txt"

  # Generate GPU service.
  cat <<EOF >/lib/systemd/system/gpu-utilization-agent.service
[Unit]
Description=GPU Utilization Metric Agent

[Service]
Type=simple
PIDFile=/run/gpu_agent.pid
ExecStart=/bin/bash --login -c 'python "${install_dir}/report_gpu_metrics.py"'
User=root
Group=root
WorkingDirectory=/
Restart=always

[Install]
WantedBy=multi-user.target
EOF
  # Reload systemd manager configuration
  systemctl daemon-reload
  # Enable gpu-utilization-agent service
  systemctl --no-reload --now enable gpu-utilization-agent.service
}

readonly bdcfg="/usr/local/bin/bdconfig"
function set_hadoop_property() {
  local -r config_file=$1
  local -r property=$2
  local -r value=$3
  "${bdcfg}" set_property \
    --configuration_file "${HADOOP_CONF_DIR}/${config_file}" \
    --name "${property}" --value "${value}" \
    --clobber
}

function configure_yarn() {
  if [[ ! -f ${HADOOP_CONF_DIR}/resource-types.xml ]]; then
    printf '<?xml version="1.0" ?>\n<configuration/>' >"${HADOOP_CONF_DIR}/resource-types.xml"
  fi
  set_hadoop_property 'resource-types.xml' 'yarn.resource-types' 'yarn.io/gpu'

  set_hadoop_property 'capacity-scheduler.xml' \
    'yarn.scheduler.capacity.resource-calculator' \
    'org.apache.hadoop.yarn.util.resource.DominantResourceCalculator'

  set_hadoop_property 'yarn-site.xml' 'yarn.resource-types' 'yarn.io/gpu'
}

# This configuration should be applied only if GPU is attached to the node
function configure_yarn_nodemanager() {
  set_hadoop_property 'yarn-site.xml' 'yarn.nodemanager.resource-plugins' 'yarn.io/gpu'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.resource-plugins.gpu.allowed-gpu-devices' 'auto'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.resource-plugins.gpu.path-to-discovery-executables' $NVIDIA_SMI_PATH
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.mount' 'true'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.mount-path' '/sys/fs/cgroup'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.linux-container-executor.cgroups.hierarchy' 'yarn'
  set_hadoop_property 'yarn-site.xml' \
    'yarn.nodemanager.container-executor.class' \
    'org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor'
  set_hadoop_property 'yarn-site.xml' 'yarn.nodemanager.linux-container-executor.group' 'yarn'

  # Fix local dirs access permissions
  local yarn_local_dirs=()
  readarray -d ',' yarn_local_dirs < <("${bdcfg}" get_property_value \
    --configuration_file "${HADOOP_CONF_DIR}/yarn-site.xml" \
    --name "yarn.nodemanager.local-dirs" 2>/dev/null | tr -d '\n')
  chown yarn:yarn -R "${yarn_local_dirs[@]/,/}"
}

function configure_gpu_exclusive_mode() {
  # check if running spark 3, if not, enable GPU exclusive mode
  local spark_version
  spark_version=$(spark-submit --version 2>&1 | sed -n 's/.*version[[:blank:]]\+\([0-9]\+\.[0-9]\).*/\1/p' | head -n1)
  if [[ ${spark_version} != 3.* ]]; then
    # include exclusive mode on GPU
    nvsmi -c EXCLUSIVE_PROCESS
  fi
}

function fetch_mig_scripts() {
  mkdir -p /usr/local/yarn-mig-scripts
  sudo chmod 755 /usr/local/yarn-mig-scripts
  wget -P /usr/local/yarn-mig-scripts/ https://raw.githubusercontent.com/NVIDIA/spark-rapids-examples/branch-22.10/examples/MIG-Support/yarn-unpatched/scripts/nvidia-smi
  wget -P /usr/local/yarn-mig-scripts/ https://raw.githubusercontent.com/NVIDIA/spark-rapids-examples/branch-22.10/examples/MIG-Support/yarn-unpatched/scripts/mig2gpu.sh
  sudo chmod 755 /usr/local/yarn-mig-scripts/*
}

function configure_gpu_script() {
  # Download GPU discovery script
  local -r spark_gpu_script_dir='/usr/lib/spark/scripts/gpu'
  mkdir -p ${spark_gpu_script_dir}
  # need to update the getGpusResources.sh script to look for MIG devices since if multiple GPUs nvidia-smi still
  # lists those because we only disable the specific GIs via CGROUPs. Here we just create it based off of:
  # https://raw.githubusercontent.com/apache/spark/master/examples/src/main/scripts/getGpusResources.sh
  cat > ${spark_gpu_script_dir}/getGpusResources.sh <<'EOF'
#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

CACHE_FILE="/var/run/nvidia-gpu-index.txt"
if [[ -f "${CACHE_FILE}" ]]; then
  cat "${CACHE_FILE}"
  exit 0
fi
NV_SMI_L_CACHE_FILE="/var/run/nvidia-smi_-L.txt"
if [[ -f "${NV_SMI_L_CACHE_FILE}" ]]; then
  NVIDIA_SMI_L="$(cat "${NV_SMI_L_CACHE_FILE}")"
else
  NVIDIA_SMI_L="$(nvidia-smi -L | tee "${NV_SMI_L_CACHE_FILE}")"
fi

NUM_MIG_DEVICES=$(echo "${NVIDIA_SMI_L}" | grep -e MIG -e H100 -e A100 | wc -l || echo '0')

if [[ "${NUM_MIG_DEVICES}" -gt "0" ]] ; then
  MIG_INDEX=$(( $NUM_MIG_DEVICES - 1 ))
  ADDRS="$(perl -e 'print(join(q{,},map{qq{"$_"}}(0..$ARGV[0])),$/)' "${MIG_INDEX}")"
else
  ADDRS=$(nvidia-smi --query-gpu=index --format=csv,noheader | perl -e 'print(join(q{,},map{chomp; qq{"$_"}}<STDIN>))')
fi

echo {\"name\": \"gpu\", \"addresses\":[$ADDRS]} | tee "${CACHE_FILE}"
EOF

  chmod a+rwx -R ${spark_gpu_script_dir}
}

function configure_gpu_isolation() {
  # enable GPU isolation
  sed -i "s/yarn\.nodemanager\.linux\-container\-executor\.group\=.*$/yarn\.nodemanager\.linux\-container\-executor\.group\=yarn/g" "${HADOOP_CONF_DIR}/container-executor.cfg"
  if [[ $IS_MIG_ENABLED -ne 0 ]]; then
    # configure the container-executor.cfg to have major caps
    printf '\n[gpu]\nmodule.enabled=true\ngpu.major-device-number=%s\n\n[cgroups]\nroot=/sys/fs/cgroup\nyarn-hierarchy=yarn\n' $MIG_MAJOR_CAPS >> "${HADOOP_CONF_DIR}/container-executor.cfg"
    printf 'export MIG_AS_GPU_ENABLED=1\n' >> "${HADOOP_CONF_DIR}/yarn-env.sh"
    printf 'export ENABLE_MIG_GPUS_FOR_CGROUPS=1\n' >> "${HADOOP_CONF_DIR}/yarn-env.sh"
  else
    printf '\n[gpu]\nmodule.enabled=true\n[cgroups]\nroot=/sys/fs/cgroup\nyarn-hierarchy=yarn\n' >> "${HADOOP_CONF_DIR}/container-executor.cfg"
  fi

  # Configure a systemd unit to ensure that permissions are set on restart
  cat >/etc/systemd/system/dataproc-cgroup-device-permissions.service<<EOF
[Unit]
Description=Set permissions to allow YARN to access device directories

[Service]
ExecStart=/bin/bash -c "chmod a+rwx -R /sys/fs/cgroup/cpu,cpuacct; chmod a+rwx -R /sys/fs/cgroup/devices"

[Install]
WantedBy=multi-user.target
EOF

  systemctl enable dataproc-cgroup-device-permissions
  systemctl start dataproc-cgroup-device-permissions
}

nvsmi_works="0"
function nvsmi() {
  local nvsmi="/usr/bin/nvidia-smi"
  if   [[ "${nvsmi_works}" == "1" ]] ; then echo "nvidia-smi is working" >&2
  elif [[ ! -f "${nvsmi}" ]]         ; then echo "nvidia-smi not installed" >&2 ; return 0
  elif ! eval "${nvsmi} > /dev/null" ; then echo "nvidia-smi fails" >&2 ; return 0
  else nvsmi_works="1" ; fi

  if [[ "$1" == "-L" ]] ; then
    local NV_SMI_L_CACHE_FILE="/var/run/nvidia-smi_-L.txt"
    if [[ -f "${NV_SMI_L_CACHE_FILE}" ]]; then cat "${NV_SMI_L_CACHE_FILE}"
    else "${nvsmi}" $* | tee "${NV_SMI_L_CACHE_FILE}" ; fi

    return 0
  fi

  "${nvsmi}" $*
}

function main() {
  if ! is_debian && ! is_ubuntu && ! is_rocky ; then
    echo "Unsupported OS: '$(os_name)'"
    exit 1
  fi

  remove_old_backports

  if is_debian || is_ubuntu ; then
    export DEBIAN_FRONTEND=noninteractive
    execute_with_retries "apt-get install -y -qq pciutils linux-headers-${uname_r}"
  elif is_rocky ; then
    execute_with_retries "dnf -y -q update --exclude=systemd*,kernel*"
    execute_with_retries "dnf -y -q install pciutils gcc"

    local dnf_cmd="dnf -y -q install kernel-devel-${uname_r}"
    local kernel_devel_pkg_out="$(eval "${dnf_cmd} 2>&1")"
    if [[ "${kernel_devel_pkg_out}" =~ 'Unable to find a match: kernel-devel-' ]] ; then
      # this kernel-devel may have been migrated to the vault
      local vault="https://download.rockylinux.org/vault/rocky/$(os_version)"
      execute_with_retries dnf -y -q --setopt=localpkg_gpgcheck=1 install \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-core-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-modules-${uname_r}.rpm" \
        "${vault}/BaseOS/x86_64/os/Packages/k/kernel-modules-core-${uname_r}.rpm" \
        "${vault}/AppStream/x86_64/os/Packages/k/kernel-devel-${uname_r}.rpm"
    else
      execute_with_retries "${dnf_cmd}"
    fi
  fi

  # This configuration should be run on all nodes
  # regardless if they have attached GPUs
  configure_yarn

  # Detect NVIDIA GPU
  if (lspci | grep -q NVIDIA); then
    # if this is called without the MIG script then the drivers are not installed
    migquery_result="$(nvsmi --query-gpu=mig.mode.current --format=csv,noheader)"
    if [[ "${migquery_result}" == "[N/A]" ]] ; then migquery_result="" ; fi
    NUM_MIG_GPUS="$(echo ${migquery_result} | uniq | wc -l)"

    if [[ "${NUM_MIG_GPUS}" -gt "0" ]] ; then
      if [[ "${NUM_MIG_GPUS}" -eq "1" ]]; then
        if (echo "${migquery_result}" | grep Enabled); then
          IS_MIG_ENABLED=1
          NVIDIA_SMI_PATH='/usr/local/yarn-mig-scripts/'
          MIG_MAJOR_CAPS=`grep nvidia-caps /proc/devices | cut -d ' ' -f 1`
          fetch_mig_scripts
        fi
      fi
    fi

    # if mig is enabled drivers would have already been installed
    if [[ $IS_MIG_ENABLED -eq 0 ]]; then
      install_nvidia_gpu_driver

      if [[ -n ${CUDNN_VERSION} ]]; then
        install_nvidia_nccl
        install_nvidia_cudnn
      fi
      #Install GPU metrics collection in Stackdriver if needed
      if [[ "${INSTALL_GPU_AGENT}" == "true" ]]; then
        install_gpu_agent
        echo 'GPU metrics agent successfully deployed.'
      else
        echo 'GPU metrics agent will not be installed.'
      fi

      # for some use cases, the kernel module needs to be removed before first use of nvidia-smi
      for module in nvidia_uvm nvidia_drm nvidia_modeset nvidia ; do
        rmmod ${module} > /dev/null 2>&1 || echo "unable to rmmod ${module}"
      done

      MIG_GPU_LIST="$(nvsmi -L | grep -e MIG -e H100 -e A100 || echo -n "")"
      if test -n "$(nvsmi -L)" ; then
	# cache the result of the gpu query
        ADDRS=$(nvsmi --query-gpu=index --format=csv,noheader | perl -e 'print(join(q{,},map{chomp; qq{"$_"}}<STDIN>))')
        echo "{\"name\": \"gpu\", \"addresses\":[$ADDRS]}" | tee "/var/run/nvidia-gpu-index.txt"
      fi
      NUM_MIG_GPUS="$(test -n "${MIG_GPU_LIST}" && echo "${MIG_GPU_LIST}" | wc -l || echo "0")"
      if [[ "${NUM_MIG_GPUS}" -gt "0" ]] ; then
        # enable MIG on every GPU
	for GPU_ID in $(echo ${MIG_GPU_LIST} | awk -F'[: ]' -e '{print $2}') ; do
	  nvsmi -i "${GPU_ID}" --multi-instance-gpu 1
	done

        NVIDIA_SMI_PATH='/usr/local/yarn-mig-scripts/'
        MIG_MAJOR_CAPS="$(grep nvidia-caps /proc/devices | cut -d ' ' -f 1)"
        fetch_mig_scripts
      else
        configure_gpu_exclusive_mode
      fi
    fi

    configure_yarn_nodemanager
    configure_gpu_script
    configure_gpu_isolation
  elif [[ "${ROLE}" == "Master" ]]; then
    configure_yarn_nodemanager
    configure_gpu_script
  fi

  # Restart YARN services if they are running already
  if [[ $(systemctl show hadoop-yarn-resourcemanager.service -p SubState --value) == 'running' ]]; then
    systemctl restart hadoop-yarn-resourcemanager.service
  fi
  if [[ $(systemctl show hadoop-yarn-nodemanager.service -p SubState --value) == 'running' ]]; then
    systemctl restart hadoop-yarn-nodemanager.service
  fi
}

main

Verifying GPU driver install

After you have finished installing the GPU driver on your Dataproc nodes, you can verify that the driver is functioning properly. SSH into the master node of your Dataproc cluster and run the following command:

nvidia-smi

If the driver is functioning properly, the output will display the driver version and GPU statistics (see Verifying the GPU driver install).

Spark configuration

When you submit a job to Spark, you can use the spark.executorEnv Spark configuration runtime environment property property with the LD_PRELOAD environment variable to preload needed libraries.

Example:

gcloud dataproc jobs submit spark --cluster=CLUSTER_NAME \
  --region=REGION \
  --class=org.apache.spark.examples.SparkPi \
  --jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \
  --properties=spark.executorEnv.LD_PRELOAD=libnvblas.so,spark.task.resource.gpu.amount=1,spark.executor.resource.gpu.amount=1,spark.executor.resource.gpu.discoveryScript=/usr/lib/spark/scripts/gpu/getGpusResources.sh

Example GPU job

You can test GPUs on Dataproc by running any of the following jobs, which benefit when run with GPUs:

  1. Run one of the Spark ML examples.
  2. Run the following example with spark-shell to run a matrix computation:
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed._
import java.util.Random

def makeRandomSquareBlockMatrix(rowsPerBlock: Int, nBlocks: Int): BlockMatrix = {
  val range = sc.parallelize(1 to nBlocks)
  val indices = range.cartesian(range)
  return new BlockMatrix(
      indices.map(
          ij => (ij, Matrices.rand(rowsPerBlock, rowsPerBlock, new Random()))),
      rowsPerBlock, rowsPerBlock, 0, 0)
}

val N = 1024 * 4
val n = 2
val mat1 = makeRandomSquareBlockMatrix(N, n)
val mat2 = makeRandomSquareBlockMatrix(N, n)
val mat3 = mat1.multiply(mat2)
mat3.blocks.persist.count
println("Processing complete!")

What's Next