擷取時間序列資料

本文說明如何使用 Monitoring API 中的 timeSeries.list 方法,讀取指標資料 (也稱為時間序列資料)。 呼叫 timeSeries.list 方法的方式有幾種:

  • 您可以使用本頁面的「通訊協定」分頁,透過表單式 APIs Explorer 執行操作。
  • 您可以使用特定語言的用戶端程式庫。
  • 您可以使用指標瀏覽器。

如要讀取指標資料,也可以將指令傳送至 timeSeries.query 方法,但這需要使用 Monitoring Query Language (MQL)。本文不會說明 MQL 或 timeSeries.query 方法。如要瞭解這些主題,請參閱使用 timeSeries.query 擷取資料。

總覽

每次呼叫 timeSeries.list 方法,都可以從單一指標類型傳回任何數量的時間序列。舉例來說,如果您使用 Compute Engine,則 compute.googleapis.com/instance/cpu/usage_time 指標類型會為每個 VM 執行個體提供個別的時間序列。如需指標與時間序列的介紹,請參閱「指標、時間序列和資源」。

如要指定所需的時間序列資料,請將下列資訊提供給 timeSeries.list 方法:

  • 指定指標類型的篩選器運算式。或者,篩選器會指定產生時間序列的資源,或為時間序列中的某些標籤指定值,以選取指標時間序列的子集。
  • 限制傳回多少資料的時間間隔。
  • 或者,指定如何結合多個時間序列,以產生資料的匯總摘要。如需更多資訊和範例,請參閱「匯總資料」。

時間序列篩選器

您可將時間序列篩選器傳送至 timeSeries.list 方法,以指定要擷取哪一個時間序列。以下列出常見的篩選器元件:

  • 篩選器必須指定單一指標類型。例如:

    metric.type = "compute.googleapis.com/instance/cpu/usage_time"
    

    如要擷取使用者定義的指標,請將篩選器中的 metric.type 前置字串變更為 custom.googleapis.com;如果已被使用,請變更為其他前置字串 (通常會使用 external.googleapis.com)。

  • 篩選器可以指定指標維度標籤的值。指標類型可決定存在哪些標籤。例如:

    (metric.label.instance_name = "your-instance-id" OR
    metric.label.instance_name = "your-other-instance-id")
    

    在上一個運算式中,label 是正確的,但實際指標物件會將 labels 做為其鍵。

  • 篩選器只能選取包含特定受控資源類型的時間序列:

    resource.type = "gce_instance"
    

篩選器元件可以結合為單一時間序列篩選器,如下所示:

metric.type = "compute.googleapis.com/instance/cpu/usage_time" AND
(metric.label.instance_name = "your-instance-id" OR
metric.label.instance_name = "your-other-instance-id")

如果未指定所有指標標籤的值,list 方法會針對未指定標籤中的每個值組合,傳回一個時間序列。此方法只會傳回有資料的時間序列。

時間間隔

使用 API 讀取資料時,請設定開始和結束時間,指定要擷取資料的時間間隔。API 會從 (start, end] 時間間隔擷取資料,也就是從開始時間之後到結束時間。

開始時間不得晚於結束時間。如果指定的開始時間晚於結束時間,API 就會傳回錯誤。

如要只擷取具有特定時間戳記的資料,請將開始時間設為等於結束時間,或不設定開始時間。

時間格式

開始與結束時間必須指定為 RFC 3339 格式的字串。 例如:

2024-03-01T12:34:56+04:00
2024-03-01T12:34:56.992Z

Linux 上的 date -Iseconds 指令非常適合用來產生時間戳記。

基本 list 作業

timeSeries.list 方法可用來傳回簡易的原始資料,也可以傳回高度處理的資料。本節說明如何列出可用的時間序列,以及如何取得特定時間序列中的值。

範例:列出可用的時間序列

此範例顯示如何僅列出符合篩選器的時間序列名稱和說明,而不是傳回所有可用資料:

通訊協定

  1. 開啟 timeSeries.list 參考頁面。

  2. 在標示為「Try this method」(試試這個方法) 的窗格中,輸入下列內容:

    • name:輸入專案的路徑。

      projects/PROJECT_ID
      
    • filter:指定指標類型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:輸入結束時間。
    • interval.startTime:輸入開始時間,並確保開始時間比結束時間早 20 分鐘。
    • 按一下「顯示標準參數」,然後在「欄位」中輸入下列內容:

      timeSeries.metric
      
  3. 按一下 [Execute] (執行)

範例輸出顯示了兩個不同 VM 執行個體的時間序列:

{
  "timeSeries": [
    {
      "metric": {
        "labels": {
          "instance_name": "your-first-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    },
    {
      "metric": {
        "labels": {
          "instance_name": "your-second-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    }
  ]
}

如要以 curl 指令、HTTP 要求或 JavaScript 形式查看要求,請在 API Explorer 中按一下「全螢幕」

C#

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

public static object ReadTimeSeriesFields(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    Console.WriteLine($"metricType{ metricType}");
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Headers,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.Write("Found data points for the following instances:");
    foreach (var item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesFields reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesFields(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		View: monitoringpb.ListTimeSeriesRequest_HEADERS,
	}
	fmt.Fprintln(w, "Found data points for the following instances:")
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintf(w, "\t%v\n", resp.GetMetric().GetLabels()["instance_name"])
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setView(ListTimeSeriesRequest.TimeSeriesView.HEADERS);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);
  System.out.println("Got timeseries headers: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesFields() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Don't return time series data, instead just return information about
    // the metrics that match the filter
    view: 'HEADERS',
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  console.log('Found data points for the following instances:');
  timeSeries.forEach(data => {
    console.log(data.metric.labels.instance_name);
  });
}
readTimeSeriesFields();

PHP

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_fields($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_fields(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = TimeSeriesView::HEADERS;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('Found data points for the following instances:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
    }
}

Python

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"
now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 1200), "nanos": nanos},
    }
)
results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.HEADERS,
    }
)
for result in results:
    print(result)

Ruby

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

gem "google-cloud-monitoring"
require "google/cloud/monitoring"

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::HEADERS

results = client.list_time_series name:     project_name,
                                  filter:   filter,
                                  interval: interval,
                                  view:     view
results.each do |result|
  p result
end

如有困難,請參閱「排解 Monitoring API 問題」。

範例:取得時間序列資料

這個範例會傳回特定 Compute Engine 執行個體在 20 分鐘間隔內記錄的 CPU 使用率測量結果。傳回的資料量取決於指標的取樣率。由於系統每分鐘會對 CPU 使用率取樣一次,因此這項查詢的結果約有 20 個資料點。如果時間序列傳回多個資料點,API 會以相反的時間順序傳回每個時間序列中的資料點;這種資料點排序沒有任何覆寫設定。

通訊協定

通訊協定範例會進一步限制輸出,以便更能在回應方塊中管理傳回的資料:

  • filter 值會將時間序列限制於單一 VM 執行個體。
  • fields 值僅指定測量的時間與值。

這些設定會限制結果中傳回的時間序列資料量。

  1. 開啟 timeSeries.list 參考頁面。

  2. 在標示為「Try this method」(試試這個方法) 的窗格中,輸入下列內容:

    • name:輸入專案的路徑。

      projects/PROJECT_ID
      
    • filter:指定指標類型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization" AND metric.label.instance_name = "INSTANCE_NAME"
      
    • interval.endTime:輸入結束時間。

    • interval.startTime:輸入開始時間,並確保開始時間比結束時間早 20 分鐘。

    • 按一下「顯示標準參數」,然後在「欄位」中輸入下列內容:

      timeSeries.points.interval.endTime,timeSeries.points.value
      
  3. 按一下 [Execute] (執行)

這個要求會傳回如下的結果:

{
 "timeSeries": [
  {
   "points": [
    {
     "interval": {
      "endTime": "2024-03-01T00:19:01Z"
     },
     "value": {
      "doubleValue": 0.06763074536575005
     }
    },
    {
     "interval": {
      "endTime": "2024-03-01T00:18:01Z"
     },
     "value": {
      "doubleValue": 0.06886174467702706
     }
    },
    ...
    {
     "interval": {
      "endTime": "2024-03-01T00:17:01Z"
     },
     "value": {
      "doubleValue": 0.06929610064253211
     }
    }
   ]
  }
 ]
}

如要以 curl 指令、HTTP 要求或 JavaScript 形式查看要求,請在 API Explorer 中按一下「全螢幕」

C#

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

public static object ReadTimeSeriesData(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Full,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    foreach (TimeSeries item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


// readTimeSeriesValue reads the TimeSeries for the value specified by metric type in a time window from the last 20 minutes.
func readTimeSeriesValue(projectID, metricType string) error {
	ctx := context.Background()
	c, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return err
	}
	defer c.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20).Unix()
	endTime := time.Now().UTC().Unix()

	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: fmt.Sprintf("metric.type=\"%s\"", metricType),
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{Seconds: startTime},
			EndTime:   &timestamp.Timestamp{Seconds: endTime},
		},
	}
	iter := c.ListTimeSeries(ctx, req)

	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value, %w ", err)
		}
		log.Printf("%+v\n", resp)
	}

	return nil
}

Java

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter(filter)
        .setInterval(interval);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesData() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';
  // const filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

  const request = {
    name: client.projectPath(projectId),
    filter: filter,
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  timeSeries.forEach(data => {
    console.log(`${data.metric.labels.instance_name}:`);
    data.points.forEach(point => {
      console.log(JSON.stringify(point.value));
    });
  });
}
readTimeSeriesData();

PHP

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_simple($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_simple(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    // Limit results to the last 20 minutes
    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        $instanceName = $timeSeries->getMetric()->getLabels()['instance_name'];
        printf($instanceName . ':' . PHP_EOL);
        foreach ($timeSeries->getPoints() as $point) {
            printf('  ' . $point->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 1200), "nanos": nanos},
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
    }
)
for result in results:
    print(result)

Ruby

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

gem "google-cloud-monitoring"
require "google/cloud/monitoring"

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL

results = client.list_time_series name:     project_name,
                                  filter:   filter,
                                  interval: interval,
                                  view:     view
results.each do |result|
  p result
end

如有困難,請參閱「排解 Monitoring API 問題」。

匯總資料

timeSeries.list 方法可對傳回的時間序列資料執行統計上的匯總與化約。以下各節提供兩個範例。如要瞭解詳情,請參閱篩選和匯總:操控時間序列

範例:校正時間序列

這個範例將每個時間序列中的 20 個使用率測量值減少為 2 個:在 20 分鐘間隔內的兩個 10 分鐘期間的平均使用率。系統會先將每個時間序列的資料校正為 10 分鐘期間,然後為每個 10 分鐘期間的值計算平均。

校正作業有兩個優點:精簡資料,並以 10 分鐘為界線,校正所有時間序列資料。然後就可以進一步處理這些對齊的資料。

通訊協定

  1. 開啟 timeSeries.list 參考頁面。

  2. 在標示為「Try this method」(試試這個方法) 的窗格中,輸入下列內容:

    • name:輸入專案的路徑。

      projects/PROJECT_ID
      
    • aggregation.alignmentPeriod:輸入 600s
    • aggregation.perSeriesAligner:選取 ALIGN_MEAN
    • filter:指定指標類型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:輸入結束時間。
    • interval.startTime:輸入開始時間,並確保開始時間比結束時間早 20 分鐘。
    • 按一下「顯示標準參數」,然後在「欄位」中輸入下列內容:

      timeSeries.metric,timeSeries.points
      
  3. 按一下 [Execute] (執行)

先前的範例中顯示的單一執行個體篩選器已遭刪除:這項查詢傳回的資料少很多,因此不需要將其限制為一個 VM 執行個體。

在以下範例結果中,三個 VM 執行個體都各有一個時間序列。每個時間序列都有兩個資料點,即 10 分鐘校正週期的平均使用率:

{
 "timeSeries": [
  {
   "metric": {
    "labels": {"instance_name": "your-first-instance"},
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.06688481346044381 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": {"doubleValue": 0.06786652821310177 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-second-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.04144239874207415 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": { "doubleValue": 0.04045793689050091 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-third-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.029650046587339607 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": { "doubleValue": 0.03053874224715402 }
    }
   ]
  }
 ]
}

如要以 curl 指令、HTTP 要求或 JavaScript 形式查看要求,請在 API Explorer 中按一下「全螢幕」

C#

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

public static object ReadTimeSeriesAggregate(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine($"{projectId} CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        var labels = item.Metric.Labels;
        Console.WriteLine($"{labels.Values.FirstOrDefault()}");
        if (points.Count > 0)
        {
            Console.WriteLine($"  Now: {points[0].Value.DoubleValue}");
        }
        if (points.Count > 1)
        {
            Console.WriteLine($"  10 min ago: {points[1].Value.DoubleValue}");
        }
    }
    return 0;
}

Go

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesAlign reads the last 20 minutes of the given metric and aligns
// everything on 10 minute intervals.
func readTimeSeriesAlign(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			PerSeriesAligner: monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintln(w, resp.GetMetric().GetLabels()["instance_name"])
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		if len(resp.GetPoints()) > 1 {
			fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
		}
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

Aggregation aggregation =
    Aggregation.newBuilder()
        .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
        .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesAggregate() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Aggregate results per matching instance
    aggregation: {
      alignmentPeriod: {
        seconds: 600,
      },
      perSeriesAligner: 'ALIGN_MEAN',
    },
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  console.log('CPU utilization:');
  timeSeries.forEach(data => {
    console.log(data.metric.labels.instance_name);
    console.log(`  Now: ${data.points[0].value.doubleValue}`);
    if (data.points.length > 1) {
      console.log(`  10 min ago: ${data.points[1].value.doubleValue}`);
    }
    console.log('=====');
  });
}
readTimeSeriesAggregate();

PHP

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\Aggregation\Aligner;
use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_align($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_align(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setPerSeriesAligner(Aligner::ALIGN_MEAN);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view)
        ->setAggregation($aggregation);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
        printf('  Now: ');
        printf($timeSeries->getPoints()[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($timeSeries->getPoints()) > 1) {
            printf('  10 minutes ago: ');
            printf($timeSeries->getPoints()[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 3600), "nanos": nanos},
    }
)
aggregation = monitoring_v3.Aggregation(
    {
        "alignment_period": {"seconds": 1200},  # 20 minutes
        "per_series_aligner": monitoring_v3.Aggregation.Aligner.ALIGN_MEAN,
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
        "aggregation": aggregation,
    }
)
for result in results:
    print(result)

Ruby

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

gem "google-cloud-monitoring"
require "google/cloud/monitoring"

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL
aggregation = Google::Cloud::Monitoring::V3::Aggregation.new(
  alignment_period:   { seconds: 1200 },
  per_series_aligner: Google::Cloud::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN
)

results = client.list_time_series name:        project_name,
                                  filter:      filter,
                                  interval:    interval,
                                  view:        view,
                                  aggregation: aggregation
results.each do |result|
  p result
end

如有困難,請參閱「排解 Monitoring API 問題」。

範例:跨時間序列化約

此範例延伸了上一個範例,將三個 VM 執行個體中完成校正的時間序列結合成單一時間序列,呈現所有執行個體的平均使用率。

通訊協定

  1. 開啟 timeSeries.list 參考頁面。

  2. 在標示為「Try this method」(試試這個方法) 的窗格中,輸入下列內容:

    • name:輸入專案的路徑。

      projects/PROJECT_ID
      
    • aggregation.alignmentPeriod:輸入 600s
    • aggregation.perSeriesAligner:選取 ALIGN_MEAN
    • aggregation.crossSeriesReducer:選取 REDUCE_MEAN
    • filter:指定指標類型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:輸入結束時間。
    • interval.startTime:輸入開始時間,並確保開始時間比結束時間早 20 分鐘。
    • 按一下「顯示標準參數」,然後在「欄位」中輸入下列內容:

      timeSeries.metric,timeSeries.points
      
  3. 按一下 [Execute] (執行)

以下範例結果只有一個時間序列及兩個資料點。每個資料點都是這段期間三個 VM 執行個體之間的平均使用率:

{
 "timeSeries": [
  {
   "metric": {
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": {
      "doubleValue": 0.045992419596619184
     }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": {
      "doubleValue": 0.04628773578358556
     }
    }
   ]
  }
 ]
}

如要以 curl 指令、HTTP 要求或 JavaScript 形式查看要求,請在 API Explorer 中按一下「全螢幕」

C#

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

public static object ReadTimeSeriesReduce(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance.
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.CrossSeriesReducer = Aggregation.Types.Reducer.ReduceMean;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine("CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        Console.WriteLine("Average CPU utilization across all GCE instances:");
        Console.WriteLine($"  Last 10 min: {points[0].Value.DoubleValue}");
        Console.WriteLine($"  Last 10-20 min ago: {points[1].Value.DoubleValue}");
    }
    return 0;
}

Go

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesReduce reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesReduce(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			CrossSeriesReducer: monitoringpb.Aggregation_REDUCE_MEAN,
			PerSeriesAligner:   monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintln(w, "Average CPU utilization across all GCE instances:")
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		if len(resp.GetPoints()) > 1 {
			fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
		}
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

Aggregation aggregation =
    Aggregation.newBuilder()
        .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
        .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
        .setCrossSeriesReducer(Aggregation.Reducer.REDUCE_MEAN)
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesReduce() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Aggregate results per matching instance
    aggregation: {
      alignmentPeriod: {
        seconds: 600,
      },
      crossSeriesReducer: 'REDUCE_MEAN',
      perSeriesAligner: 'ALIGN_MEAN',
    },
  };

  // Writes time series data
  const [result] = await client.listTimeSeries(request);
  if (result.length === 0) {
    console.log('No data');
    return;
  }
  const reductions = result[0].points;

  console.log('Average CPU utilization across all GCE instances:');
  console.log(`  Last 10 min: ${reductions[0].value.doubleValue}`);
  console.log(`  10-20 min ago: ${reductions[0].value.doubleValue}`);
}
readTimeSeriesReduce();

PHP

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_reduce($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_reduce(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setCrossSeriesReducer(Aggregation\Reducer::REDUCE_MEAN);
    $aggregation->setPerSeriesAligner(Aggregation\Aligner::ALIGN_MEAN);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view)
        ->setAggregation($aggregation);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('Average CPU utilization across all GCE instances:' . PHP_EOL);
    if ($timeSeries = $result->iterateAllElements()->current()) {
        $reductions = $timeSeries->getPoints();
        printf('  Last 10 minutes: ');
        printf($reductions[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($reductions) > 1) {
            printf('  10-20 minutes ago: ');
            printf($reductions[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 3600), "nanos": nanos},
    }
)
aggregation = monitoring_v3.Aggregation(
    {
        "alignment_period": {"seconds": 1200},  # 20 minutes
        "per_series_aligner": monitoring_v3.Aggregation.Aligner.ALIGN_MEAN,
        "cross_series_reducer": monitoring_v3.Aggregation.Reducer.REDUCE_MEAN,
        "group_by_fields": ["resource.zone"],
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
        "aggregation": aggregation,
    }
)
for result in results:
    print(result)

Ruby

如要驗證 Monitoring,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

gem "google-cloud-monitoring"
require "google/cloud/monitoring"

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL
aggregation = Google::Cloud::Monitoring::V3::Aggregation.new(
  alignment_period:     { seconds: 1200 },
  per_series_aligner:   Google::Cloud::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN,
  cross_series_reducer: Google::Cloud::Monitoring::V3::Aggregation::Reducer::REDUCE_MEAN,
  group_by_fields:      ["resource.zone"]
)

results = client.list_time_series name:        project_name,
                                  filter:      filter,
                                  interval:    interval,
                                  view:        view,
                                  aggregation: aggregation
results.each do |result|
  p result
end

如有困難,請參閱「排解 Monitoring API 問題」。

後續步驟