Modell mit einer einzelnen GPU in GKE bereitstellen


In dieser Anleitung erfahren Sie, wie Sie ein Large Language Model (LLM) mit GPUs in der Google Kubernetes Engine (GKE) mit dem NVIDIA Triton Inference Server und TensorFlow Serving bereitstellen und ausführen. Dies bildet die Grundlage für das Verständnis und die praktische Bereitstellung von LLMs für die Inferenz in einer verwalteten Kubernetes-Umgebung. Sie stellen einen vorkonfigurierten Container in einem GKE-Cluster mit einer einzelnen L4 Tensor Core-GPU bereit und bereiten die GKE-Infrastruktur für die Onlineinferenz vor.

Diese Anleitung richtet sich an Entwickler für maschinelles Lernen (ML), Plattformadministratoren und ‑bearbeiter sowie an Daten- und KI-Spezialisten, die ein vortrainiertes ML-Modell in einem GKE-Cluster hosten möchten. Weitere Informationen zu gängigen Rollen und Beispielaufgaben, auf die in Google Cloud-Inhalten verwiesen wird, finden Sie unter Häufig verwendete GKE Enterprise-Nutzerrollen und -Aufgaben.

Machen Sie sich vor dem Lesen dieser Seite mit den folgenden Themen vertraut:

Lernziele

  1. Erstellen Sie einen GKE Autopilot- oder Standard-Cluster.
  2. Cloud Storage-Bucket konfigurieren, in dem sich das vortrainierte Modell befindet
  3. Stellen Sie das ausgewählte Online-Inferenz-Framework bereit.
  4. Stellen Sie eine Testanfrage an den bereitgestellten Dienst.

Kosten

In dieser Anleitung werden die folgenden kostenpflichtigen Komponenten von Google Cloudverwendet:

  • GKE
  • Cloud Storage
  • L4-GPU-Beschleuniger
  • Ausgehender Traffic

Sie können mithilfe des Preisrechners eine Kostenschätzung für Ihre voraussichtliche Nutzung erstellen.

Nach Abschluss dieser Anleitung können Sie weitere Kosten durch Löschen von erstellten Ressourcen vermeiden. Weitere Informationen finden Sie unter Bereinigen.

Vorbereitung

Projekt einrichten

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, click Create project to begin creating a new Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the GKE API.

    Enable the API

  5. In the Google Cloud console, on the project selector page, click Create project to begin creating a new Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the GKE API.

    Enable the API

  8. Standardeinstellungen für die Google Cloud CLI festlegen

    1. Starten Sie in der Google Cloud Console eine Cloud Shell-Instanz:
      Cloud Shell öffnen

    2. Laden Sie den Quellcode für diese Beispielanwendung herunter:

      git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples
      cd kubernetes-engine-samples/ai-ml/gke-online-serving-single-gpu
      
    3. Legen Sie die Standardumgebungsvariablen fest:

      gcloud config set project PROJECT_ID
      gcloud config set compute/region COMPUTE_REGION
      

      Ersetzen Sie die folgenden Werte:

      • PROJECT_ID: Ihre Google Cloud Projekt-ID.
      • COMPUTE_REGION: die Compute Engine-Region, die den Beschleunigertyp unterstützt, den Sie verwenden möchten, z. B. us-central1 für L4-GPU.
    4. Erstellen Sie in Cloud Shell die folgenden Umgebungsvariablen:

      export PROJECT_ID=$(gcloud config get project)
      export REGION=$(gcloud config get compute/region)
      export K8S_SA_NAME=gpu-k8s-sa
      export GSBUCKET=$PROJECT_ID-gke-bucket
      export MODEL_NAME=mnist
      export CLUSTER_NAME=online-serving-cluster
      

    GKE-Cluster erstellen

    Sie können Modelle auf einer einzelnen GPU in einem GKE Autopilot- oder Standardcluster bereitstellen. Für eine vollständig verwaltete Kubernetes-Umgebung empfehlen wir die Verwendung eines Autopilot-Clusters. Mit GKE Autopilot werden die Ressourcen automatisch basierend auf den Modellanfragen skaliert.

    Informationen zum Auswählen des GKE-Betriebsmodus, der für Ihre Arbeitslasten am besten geeignet ist, finden Sie unter GKE-Betriebsmodus auswählen.

    Autopilot

    Führen Sie den folgenden Befehl aus, um einen GKE Autopilot-Cluster zu erstellen:

      gcloud container clusters create-auto ${CLUSTER_NAME} \
          --region=${REGION} \
          --project=${PROJECT_ID} \
          --release-channel=rapid
    

    GKE erstellt einen Autopilot-Cluster mit CPU- und GPU-Knoten, wie von den bereitgestellten Arbeitslasten angefordert.

    Standard

    1. Führen Sie den folgenden Befehl aus, um einen GKE-Standardcluster zu erstellen:

        gcloud container clusters create ${CLUSTER_NAME} \
          --project=${PROJECT_ID}  \
          --region=${REGION}  \
          --workload-pool=${PROJECT_ID}.svc.id.goog \
          --addons GcsFuseCsiDriver \
          --release-channel=rapid \
          --num-nodes=1
      

      Die Erstellung eines Clusters kann einige Minuten dauern.

    2. Führen Sie den folgenden Befehl aus, um den Knotenpool zu erstellen:

        gcloud container node-pools create gpupool \
          --accelerator type=nvidia-l4,count=1,gpu-driver-version=latest \
          --project=${PROJECT_ID} \
          --location=${REGION} \
          --node-locations=${REGION}-a \
          --cluster=${CLUSTER_NAME} \
          --machine-type=g2-standard-8 \
          --num-nodes=1
      

      GKE erstellt einen einzelnen Knotenpool mit einer L4-GPU für jeden Knoten.

Cloud Storage-Bucket erstellen

Erstellen Sie einen Cloud Storage-Bucket zum Speichern des vortrainierten Modells, das bereitgestellt werden soll.

Führen Sie in Cloud Shell folgenden Befehl aus:

gcloud storage buckets create gs://$GSBUCKET

Cluster für den Zugriff auf den Bucket mithilfe der Identitätsföderation von Arbeitslasten für GKE konfigurieren

So gewähren Sie dem Cluster Zugriff auf den Cloud Storage-Bucket:

  1. Erstellen Sie ein Google Cloud Dienstkonto.
  2. Erstellen Sie ein Kubernetes-Dienstkonto in Ihrem Cluster.
  3. Binden Sie das Kubernetes-Dienstkonto an das Google Cloud -Dienstkonto.

Dienstkonto Google Cloud erstellen

  1. Rufen Sie in der Google Cloud Console die Seite Dienstkonto erstellen auf:

    Zur Seite „Dienstkonto erstellen“

  2. Geben Sie im Feld Dienstkonto-ID gke-ai-sa ein.

  3. Klicken Sie auf Erstellen und fortfahren.

  4. Wählen Sie in der Liste Rolle die Rolle Cloud Storage > Storage Insights Collector Service aus.

  5. Klicken Sie auf Weitere Rolle hinzufügen.

  6. Wählen Sie in der Liste Rolle auswählen die Rolle Cloud Storage > Storage Object Admin aus.

  7. Klicken Sie auf Weiter und dann auf Fertig.

Kubernetes-Dienstkonto in Ihrem Cluster erstellen

Gehen Sie in Cloud Shell so vor:

  1. Erstellen Sie einen Kubernetes-Namespace:

    kubectl create namespace gke-ai-namespace
    
  2. Erstellen Sie ein Kubernetes-Dienstkonto im Namespace:

    kubectl create serviceaccount gpu-k8s-sa --namespace=gke-ai-namespace
    

Kubernetes-Dienstkonto an das Google Cloud -Dienstkonto binden

Führen Sie in Cloud Shell die folgenden Befehle aus:

  1. Fügen Sie dem Dienstkonto Google Cloud eine IAM-Bindung hinzu:

    gcloud iam service-accounts add-iam-policy-binding gke-ai-sa@PROJECT_ID.iam.gserviceaccount.com \
        --role roles/iam.workloadIdentityUser \
        --member "serviceAccount:PROJECT_ID.svc.id.goog[gke-ai-namespace/gpu-k8s-sa]"
    

    Das Flag --member stellt die vollständige Identität des Kubernetes-Dienstkontos in Google Cloudbereit.

  2. Annotieren Sie das Kubernetes-Dienstkonto.

    kubectl annotate serviceaccount gpu-k8s-sa \
        --namespace gke-ai-namespace \
        iam.gke.io/gcp-service-account=gke-ai-sa@PROJECT_ID.iam.gserviceaccount.com
    

Online-Inferenzserver bereitstellen

Jedes Online-Inferenz-Framework erwartet das vortrainierte ML-Modell in einem bestimmten Format. Im folgenden Abschnitt wird gezeigt, wie Sie den Inferenzserver je nach dem gewünschten Framework bereitstellen:

Triton

  1. Kopieren Sie in Cloud Shell das vortrainierte ML-Modell in den Cloud Storage-Bucket:

    gcloud storage cp src/triton-model-repository gs://$GSBUCKET --recursive
    
  2. Framework mit einem Deployment bereitstellen Ein Deployment ist ein Kubernetes API-Objekt, mit dem Sie mehrere Replikate von Pods ausführen können, die auf die Knoten in einem Cluster verteilt sind:

    envsubst < src/gke-config/deployment-triton.yaml | kubectl --namespace=gke-ai-namespace apply -f -
    
  3. Prüfen Sie, ob GKE das Framework bereitgestellt hat:

    kubectl get deployments --namespace=gke-ai-namespace
    

    Wenn das Framework bereit ist, sieht die Ausgabe in etwa so aus:

    NAME                 READY   UP-TO-DATE   AVAILABLE   AGE
    triton-deployment    1/1     1            1           5m29s
    
  4. Stellen Sie die Dienste für den Zugriff auf die Bereitstellung bereit:

    kubectl apply --namespace=gke-ai-namespace -f src/gke-config/service-triton.yaml
    
  5. Prüfen Sie, ob die externe IP-Adresse zugewiesen ist:

    kubectl get services --namespace=gke-ai-namespace
    

    Die Ausgabe sieht in etwa so aus:

    NAME            TYPE           CLUSTER-IP       EXTERNAL-IP     PORT(S)                                        AGE
    kubernetes      ClusterIP      34.118.224.1     <none>          443/TCP                                        60m
    triton-server   LoadBalancer   34.118.227.176   35.239.54.228   8000:30866/TCP,8001:31035/TCP,8002:30516/TCP   5m14s
    

    Notieren Sie sich die IP-Adresse für triton-server in der Spalte EXTERNAL-IP.

  6. Überprüfen Sie, ob der Dienst und die Bereitstellung ordnungsgemäß funktionieren:

    curl -v EXTERNAL_IP:8000/v2/health/ready
    

    Die Ausgabe sieht in etwa so aus:

    ...
    < HTTP/1.1 200 OK
    < Content-Length: 0
    < Content-Type: text/plain
    ...
    

TF-Bereitstellung

  1. Kopieren Sie in Cloud Shell das vortrainierte ML-Modell in den Cloud Storage-Bucket:

    gcloud storage cp src/tfserve-model-repository gs://$GSBUCKET --recursive
    
  2. Framework mit einem Deployment bereitstellen Ein Deployment ist ein Kubernetes API-Objekt, mit dem Sie mehrere Replikate von Pods ausführen können, die auf die Knoten in einem Cluster verteilt sind:

    envsubst < src/gke-config/deployment-tfserve.yaml | kubectl --namespace=gke-ai-namespace apply -f -
    
  3. Prüfen Sie, ob GKE das Framework bereitgestellt hat:

    kubectl get deployments --namespace=gke-ai-namespace
    

    Wenn das Framework bereit ist, sieht die Ausgabe in etwa so aus:

    NAME                 READY   UP-TO-DATE   AVAILABLE   AGE
    tfserve-deployment   1/1     1            1           5m29s
    
  4. Stellen Sie die Dienste für den Zugriff auf die Bereitstellung bereit:

    kubectl apply --namespace=gke-ai-namespace -f src/gke-config/service-tfserve.yaml
    
  5. Prüfen Sie, ob die externe IP-Adresse zugewiesen ist:

    kubectl get services --namespace=gke-ai-namespace
    

    Die Ausgabe sieht in etwa so aus:

    NAME            TYPE           CLUSTER-IP       EXTERNAL-IP     PORT(S)                                        AGE
    kubernetes      ClusterIP      34.118.224.1     <none>          443/TCP                                        60m
    tfserve-server  LoadBalancer   34.118.227.176   35.239.54.228   8500:30003/TCP,8000:32194/TCP                  5m14s
    

    Notieren Sie sich die IP-Adresse für tfserve-server in der Spalte EXTERNAL-IP.

  6. Prüfen Sie, ob der Dienst und die Bereitstellung ordnungsgemäß funktionieren:

    curl -v EXTERNAL_IP:8000/v1/models/mnist
    

    Ersetzen Sie dabei EXTERNAL_IP durch Ihre externe IP-Adresse.

    Die Ausgabe sieht in etwa so aus:

    ...
    < HTTP/1.1 200 OK
    < Content-Type: application/json
    < Date: Thu, 12 Oct 2023 19:01:19 GMT
    < Content-Length: 154
    <
    {
      "model_version_status": [
            {
            "version": "1",
            "state": "AVAILABLE",
            "status": {
              "error_code": "OK",
              "error_message": ""
            }
          }
        ]
    }
    

Modell bereitstellen

Triton

  1. Erstellen Sie eine virtuelle Python-Umgebung in Cloud Shell.

    python -m venv ./mnist_client
    source ./mnist_client/bin/activate
    
  2. Installieren Sie die erforderlichen Python-Pakete:

    pip install -r src/client/triton-requirements.txt
    
  3. Testen Sie den Triton-Inferenzserver durch Laden eines Bildes:

    cd src/client
    python triton_mnist_client.py -i EXTERNAL_IP -m mnist -p ./images/TEST_IMAGE.png
    

    Ersetzen Sie Folgendes:

    • EXTERNAL_IP: ist Ihre externe IP-Adresse.
    • TEST_IMAGE: Der Name der Datei, die dem zu testenden Image entspricht. Sie können die in src/client/images gespeicherten Images verwenden.

    Je nach verwendetem Image sieht die Ausgabe in etwa so aus:

    Calling Triton HTTP Service      ->      Prediction result: 7
    

TF-Bereitstellung

  1. Erstellen Sie eine virtuelle Python-Umgebung in Cloud Shell.

    python -m venv ./mnist_client
    source ./mnist_client/bin/activate
    
  2. Installieren Sie die erforderlichen Python-Pakete:

    pip install -r src/client/tfserve-requirements.txt
    
  3. TensorFlow Serving mit einigen Bildern testen

    cd src/client
    python tfserve_mnist_client.py -i EXTERNAL_IP -m mnist -p ./images/TEST_IMAGE.png
    

Ersetzen Sie Folgendes:

  • EXTERNAL_IP: ist Ihre externe IP-Adresse.
  • TEST_IMAGE: Ein Wert zwischen 0 und 9. Sie können die in src/client/images gespeicherten Images verwenden.

Je nachdem, welches Image Sie verwenden, erhalten Sie eine Ausgabe ähnlich der folgenden:

  Calling TensorFlow Serve HTTP Service    ->      Prediction result: 5

Modellleistung beobachten

Triton

Sie können die Modellleistung mithilfe der Triton-Dashboard-Integration in Cloud Monitoring beobachten. In diesem Dashboard können Sie wichtige Leistungsmesswerte wie Tokendurchsatz, Anfragelatenz und Fehlerraten abrufen.

Wenn Sie das Triton-Dashboard verwenden möchten, müssen Sie Google Cloud Managed Service for Prometheus in Ihrem GKE-Cluster aktivieren. Dieser Dienst erfasst die Messwerte von Triton. Triton stellt standardmäßig Messwerte im Prometheus-Format bereit. Sie müssen keinen zusätzlichen Exporter installieren.

Sie können die Messwerte dann über das Triton-Dashboard aufrufen. Informationen zur Verwendung von Google Cloud Managed Service for Prometheus zum Erfassen von Messwerten aus Ihrem Modell finden Sie in der Cloud Monitoring-Dokumentation unter Triton.

TF-Bereitstellung

Sie können die Modellleistung mithilfe der Dashboard-Integration für TF Serving in Cloud Monitoring beobachten. In diesem Dashboard können Sie wichtige Leistungsmesswerte wie Tokendurchsatz, Anfragelatenz und Fehlerraten abrufen.

Wenn Sie das TF Serving-Dashboard verwenden möchten, müssen Sie Google Cloud Managed Service for Prometheus in Ihrem GKE-Cluster aktivieren. Dieser Dienst erfasst die Messwerte von TF Serving.

Sie können die Messwerte dann über das TF Serving-Dashboard aufrufen. Informationen zur Verwendung von Google Cloud Managed Service for Prometheus zum Erfassen von Messwerten aus Ihrem Modell finden Sie in der Cloud Monitoring-Dokumentation unter TF Serving.

Bereinigen

Führen Sie einen der folgenden Schritte aus, damit Ihrem Google Cloud -Konto die in dieser Anleitung erstellten Ressourcen nicht in Rechnung gestellt werden:

  • GKE-Cluster beibehalten:Kubernetes-Ressourcen im Cluster und die Google Cloud
  • Google Cloud -Projekt beibehalten:GKE-Cluster und Google Cloud -Ressourcen löschen
  • Projekt löschen

Kubernetes-Ressourcen im Cluster und die Google Cloud -Ressourcen löschen

  1. Löschen Sie den Kubernetes-Namespace und die bereitgestellten Arbeitslasten:

Triton

kubectl -n gke-ai-namespace delete -f src/gke-config/service-triton.yaml
kubectl -n gke-ai-namespace delete -f src/gke-config/deployment-triton.yaml
kubectl delete namespace gke-ai-namespace

TF-Bereitstellung

kubectl -n gke-ai-namespace delete -f src/gke-config/service-tfserve.yaml
kubectl -n gke-ai-namespace delete -f src/gke-config/deployment-tfserve.yaml
kubectl delete namespace gke-ai-namespace
  1. Löschen Sie den Cloud Storage-Bucket:

    1. Rufen Sie die Seite Buckets auf.

      Buckets aufrufen

    2. Aktivieren Sie das Kästchen für PROJECT_ID-gke-bucket.

    3. Klicken Sie auf Löschen.

    4. Geben Sie DELETE ein und klicken Sie auf Löschen, um den Löschvorgang zu bestätigen.

  2. Löschen Sie das Dienstkonto Google Cloud :

    1. Rufen Sie die Seite Dienstkonten auf:

      Zur Seite „Dienstkonten“

    2. Wählen Sie Ihr Projekt aus.

    3. Aktivieren Sie das Kästchen für gke-gpu-sa@PROJECT_ID.iam.gserviceaccount.com.

    4. Klicken Sie auf Löschen.

    5. Klicken Sie zur Bestätigung noch einmal auf Löschen.

GKE-Cluster und Google Cloud -Ressourcen löschen

  1. Löschen Sie den GKE-Cluster:

    1. Rufen Sie die Seite Cluster auf:

      Zu den Clustern

    2. Aktivieren Sie das Kästchen für online-serving-cluster.

    3. Klicken Sie auf Löschen.

    4. Geben Sie online-serving-cluster ein und klicken Sie auf Löschen, um den Löschvorgang zu bestätigen.

  2. Löschen Sie den Cloud Storage-Bucket:

    1. Rufen Sie die Seite Buckets auf.

      Buckets aufrufen

    2. Aktivieren Sie das Kästchen für PROJECT_ID-gke-bucket.

    3. Klicken Sie auf Löschen.

    4. Geben Sie DELETE ein und klicken Sie auf Löschen, um den Löschvorgang zu bestätigen.

  3. Löschen Sie das Dienstkonto Google Cloud :

    1. Rufen Sie die Seite Dienstkonten auf:

      Zur Seite „Dienstkonten“

    2. Wählen Sie Ihr Projekt aus.

    3. Aktivieren Sie das Kästchen für gke-gpu-sa@PROJECT_ID.iam.gserviceaccount.com.

    4. Klicken Sie auf Löschen.

    5. Klicken Sie zur Bestätigung noch einmal auf Löschen.

Projekt löschen

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Nächste Schritte