Cómo obtener recomendaciones

En esta página, se muestra cómo obtener una vista previa de las recomendaciones con la consola de Google Cloud y obtener resultados de recomendaciones con la API. Consulta la pestaña REST para ver ejemplos de llamadas a la API que pueden ayudarte a integrar recomendaciones en tu app.

El procedimiento que uses dependerá de si tienes datos de medios o datos personalizados:

Cómo obtener recomendaciones de contenido multimedia

Console

Para usar la consola de Google Cloud para obtener una vista previa de las recomendaciones de medios, sigue estos pasos:

  1. En la consola de Google Cloud , ve a la página AI Applications.

    Aplicaciones basadas en IA

  2. Haz clic en el nombre de la app para la que deseas obtener una vista previa de las recomendaciones.

  3. Haz clic en Configurations > Training. Si Listo para consultar es Sí, la app está lista para la vista previa.

  4. Haz clic en Vista previa.

  5. Haz clic en el campo ID del documento. Aparecerá una lista de los IDs de documento.

  6. Haz clic en el ID correspondiente al documento del que deseas obtener recomendaciones. También puedes escribir un ID de documento en el campo ID de documento.

  7. Haz clic en Seleccionar configuración de entrega y elige la configuración de entrega de la que deseas obtener una vista previa.

  8. Opcional: Ingresa el ID de visitante (también llamado ID de seudousuario) de un usuario para el que recopilaste eventos del usuario. Si dejas este campo en blanco o ingresas un ID de visitante que no existe, obtendrás una vista previa de las recomendaciones como si fueras un usuario nuevo.

  9. Haz clic en Obtener recomendaciones. Aparecerá una lista de documentos recomendados.

  10. Haz clic en un documento para obtener los detalles.

REST

Para usar la API y obtener recomendaciones de contenido multimedia, usa el método servingConfigs.recommend:

  1. Busca el ID del motor y el ID de la configuración de entrega. Si ya tienes tu ID de motor y los IDs de configuración de publicación, ve al paso 2.

    1. En la consola de Google Cloud , ve a la página AI Applications.

      Aplicaciones basadas en IA

    2. Haz clic en el nombre de la app.

    3. En el panel de navegación, haz clic en Configuraciones.

    4. Si solo tienes una configuración de entrega, obtén el ID de configuración de entrega que se muestra en la pestaña Entrega.

      Si tienes varias configuraciones de entrega en la pestaña Entrega, busca la configuración de entrega de la que deseas obtener recomendaciones. El ID de tu configuración de entrega es el valor de la columna ID.

    5. Haz clic en la pestaña Entrenamiento. El ID del motor es el valor de la fila ID de la app.

  2. Asegúrate de que la app esté lista para la vista previa:

    1. En la consola de Google Cloud , ve a la página AI Applications.

      Aplicaciones basadas en IA

    2. Haz clic en el nombre de la app.

    3. Haz clic en Configurations > Training. Si Listo para consultar es Sí, la app está lista para la vista previa.

  3. Obtener recomendaciones

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json; charset=utf-8" \
    -d  '{
            "validateOnly": false,
            "userEvent": {
                "eventType": "view-item",
                "userPseudoId": "USER_PSEUDO_ID",
                "documents": [{
                  "id": "DOCUMENT_ID"
                }],
            "filter": "FILTER_STRING"            }
        }' \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"

    Reemplaza lo siguiente:

    • PROJECT_ID: el ID de tu proyecto.
    • DATA_STORE_ID: Es el ID de tu almacén de datos.
    • DOCUMENT_ID: Es el ID del documento para el que deseas obtener una vista previa de las recomendaciones. Usa el ID que usaste para este documento en el momento en que transferiste tus datos.
    • USER_PSEUDO_ID: Es un identificador seudonimizado del usuario. Puedes usar una cookie HTTP para este campo, que identifica de forma única a un visitante en un solo dispositivo. No establezcas este campo en el mismo identificador para varios usuarios, ya que esto combinaría sus historiales de eventos y degradaría la calidad del modelo. No incluyas información de identificación personal (PII) en este campo.
    • SERVING_CONFIG_ID: Es el ID de tu configuración de publicación.
    • FILTER: es opcional. Es un campo de texto que te permite filtrar un conjunto específico de campos con la sintaxis de expresión de filtro. El valor predeterminado es una cadena vacía, lo que significa que no se aplica ningún filtro. Para obtener más información, consulta Cómo filtrar recomendaciones.

Deberías ver resultados similares a los siguientes:

{
  "results": [{"id": "sample-id-1"}, {"id": "sample-id-2"}],
  "attributionToken": "abc123"
}

Google recomienda asociar los tokens de atribución, que incluimos con cada respuesta de búsqueda y recomendación, con las acciones que realiza un usuario en respuesta a esas respuestas de búsqueda y recomendaciones. Esto puede mejorar la calidad de tus respuestas y recomendaciones de búsqueda con el tiempo. Para ello, agrega valores de attributionToken a las URLs de cada uno de los vínculos que se muestran en tu sitio web para las respuestas o recomendaciones de búsqueda, por ejemplo, https://www.example.com/54321/?rtoken=abc123. Cuando un usuario haga clic en uno de estos vínculos, incluye el valor de attributionToken en el evento del usuario que registres.

Obtén recomendaciones para una app con datos estructurados personalizados

Console

Para usar la consola de Google Cloud para obtener una vista previa de las recomendaciones personalizadas para tu app estructurada, sigue estos pasos:

  1. En la consola de Google Cloud , ve a la página AI Applications.

    Aplicaciones basadas en IA

  2. Haz clic en el nombre de la app para la que deseas obtener una vista previa de las recomendaciones.

  3. Haz clic en Vista previa.

  4. Haz clic en el campo ID del documento. Aparecerá una lista de los IDs de documento.

  5. Haz clic en el ID correspondiente al documento del que deseas obtener recomendaciones. También puedes escribir un ID de documento en el campo ID de documento.

  6. Haz clic en Obtener recomendaciones. Aparecerá una lista de documentos recomendados.

  7. Haz clic en un documento para obtener los detalles.

REST

Para usar la API y obtener recomendaciones personalizadas para una app con datos estructurados, usa el método servingConfigs.recommend:

  1. Encuentra el ID del motor. Si ya tienes el ID del motor, ve al paso 2.

    1. En la consola de Google Cloud , ve a la página AI Applications.

      Aplicaciones basadas en IA

    2. Haz clic en el nombre de la app.

    3. Obtén el ID del motor de la URL de la consola de Google Cloud . Es el texto entre engines/ y /data. Por ejemplo, si la URL contiene

      gen-app-builder/engines/demo_1234567890123/data/records
      

      entonces el ID del motor es demo_1234567890123.

  2. Busca el ID de tu almacén de datos. Si ya tienes el ID del almacén de datos, ve al siguiente paso.

    1. En la consola de Google Cloud , ve a la página AI Applications y, en el menú de navegación, haz clic en Data Stores.

      Ve a la página Almacenes de datos.

    2. Haz clic en el nombre de tu almacén de datos.

    3. En la página Datos de tu almacén de datos, obtén el ID del almacén de datos.

  3. Asegúrate de que tu motor esté listo para la vista previa sondeando el método GetEngine hasta que devuelva "servingState":"ACTIVE". En ese punto, el motor estará listo para la vista previa.

    curl -X GET \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    "https://discoveryengine.googleapis.com/v1/projects/PROJECT_ID/locations/global/collections/default_collection/engines/ENGINE_ID
    

    Reemplaza lo siguiente:

    • PROJECT_ID: el ID de tu proyecto.
    • ENGINE_ID: Es el ID de tu motor.
  4. Obtener recomendaciones

    curl -X POST \
    -H "Authorization: Bearer $(gcloud auth print-access-token)" \
    -H "Content-Type: application/json" \
    -d '{
      "userEvent": { "eventType":"view-item", "userPseudoId":"USER_PSEUDO_ID", "documents":[{"id":"DOCUMENT_ID"}]}}' \
      "https://discoveryengine.googleapis.com/v1beta/projects/PROJECT_ID/locations/global/collections/default_collection/dataStores/DATA_STORE_ID/servingConfigs/SERVING_CONFIG_ID:recommend"
    

    Reemplaza lo siguiente:

    • PROJECT_ID: el ID de tu proyecto.
    • DATA_STORE_ID: Es el ID de tu almacén de datos.
    • DOCUMENT_ID: Es el ID del documento para el que deseas obtener una vista previa de las recomendaciones. Usa el ID que usaste para este documento en el momento en que transferiste tus datos.
    • USER_PSEUDO_ID: Es un identificador seudonimizado del usuario. Puedes usar una cookie HTTP para este campo, que identifica de forma única a un visitante en un solo dispositivo. No establezcas este campo en el mismo identificador para varios usuarios, ya que esto combinaría sus historiales de eventos y degradaría la calidad del modelo. No incluyas información de identificación personal (PII) en este campo.
    • SERVING_CONFIG_ID: Es el ID de tu configuración de publicación. Tu ID de configuración de entrega es el mismo que el ID del motor, así que usa el ID del motor aquí.

C#

Para obtener más información, consulta la documentación de referencia de la API de AI Applications C#.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

using Google.Cloud.DiscoveryEngine.V1Beta;
using Google.Protobuf.WellKnownTypes;

public sealed partial class GeneratedRecommendationServiceClientSnippets
{
    /// <summary>Snippet for Recommend</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void RecommendRequestObject()
    {
        // Create client
        RecommendationServiceClient recommendationServiceClient = RecommendationServiceClient.Create();
        // Initialize request argument(s)
        RecommendRequest request = new RecommendRequest
        {
            ServingConfigAsServingConfigName = ServingConfigName.FromProjectLocationDataStoreServingConfig("[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SERVING_CONFIG]"),
            UserEvent = new UserEvent(),
            PageSize = 0,
            Filter = "",
            ValidateOnly = false,
            Params = { { "", new Value() }, },
            UserLabels = { { "", "" }, },
        };
        // Make the request
        RecommendResponse response = recommendationServiceClient.Recommend(request);
    }
}

Go

Para obtener más información, consulta la documentación de referencia de la API de AI Applications Go.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


package main

import (
	"context"

	discoveryengine "cloud.google.com/go/discoveryengine/apiv1beta"
	discoveryenginepb "cloud.google.com/go/discoveryengine/apiv1beta/discoveryenginepb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := discoveryengine.NewRecommendationClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &discoveryenginepb.RecommendRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/discoveryengine/apiv1beta/discoveryenginepb#RecommendRequest.
	}
	resp, err := c.Recommend(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Java

Para obtener más información, consulta la documentación de referencia de la API de AI Applications Java.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import com.google.cloud.discoveryengine.v1beta.RecommendRequest;
import com.google.cloud.discoveryengine.v1beta.RecommendResponse;
import com.google.cloud.discoveryengine.v1beta.RecommendationServiceClient;
import com.google.cloud.discoveryengine.v1beta.ServingConfigName;
import com.google.cloud.discoveryengine.v1beta.UserEvent;
import com.google.protobuf.Value;
import java.util.HashMap;

public class SyncRecommend {

  public static void main(String[] args) throws Exception {
    syncRecommend();
  }

  public static void syncRecommend() throws Exception {
    // This snippet has been automatically generated and should be regarded as a code template only.
    // It will require modifications to work:
    // - It may require correct/in-range values for request initialization.
    // - It may require specifying regional endpoints when creating the service client as shown in
    // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
    try (RecommendationServiceClient recommendationServiceClient =
        RecommendationServiceClient.create()) {
      RecommendRequest request =
          RecommendRequest.newBuilder()
              .setServingConfig(
                  ServingConfigName.ofProjectLocationDataStoreServingConfigName(
                          "[PROJECT]", "[LOCATION]", "[DATA_STORE]", "[SERVING_CONFIG]")
                      .toString())
              .setUserEvent(UserEvent.newBuilder().build())
              .setPageSize(883849137)
              .setFilter("filter-1274492040")
              .setValidateOnly(true)
              .putAllParams(new HashMap<String, Value>())
              .putAllUserLabels(new HashMap<String, String>())
              .build();
      RecommendResponse response = recommendationServiceClient.recommend(request);
    }
  }
}

Node.js

Para obtener más información, consulta la documentación de referencia de la API de AI Applications Node.js.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * This snippet has been automatically generated and should be regarded as a code template only.
 * It will require modifications to work.
 * It may require correct/in-range values for request initialization.
 * TODO(developer): Uncomment these variables before running the sample.
 */
/**
 *  Required. Full resource name of a
 *  ServingConfig google.cloud.discoveryengine.v1beta.ServingConfig:
 *  `projects/* /locations/global/collections/* /engines/* /servingConfigs/*`, or
 *  `projects/* /locations/global/collections/* /dataStores/* /servingConfigs/*`
 *  One default serving config is created along with your recommendation engine
 *  creation. The engine ID is used as the ID of the default serving
 *  config. For example, for Engine
 *  `projects/* /locations/global/collections/* /engines/my-engine`, you can use
 *  `projects/* /locations/global/collections/* /engines/my-engine/servingConfigs/my-engine`
 *  for your
 *  RecommendationService.Recommend google.cloud.discoveryengine.v1beta.RecommendationService.Recommend 
 *  requests.
 */
// const servingConfig = 'abc123'
/**
 *  Required. Context about the user, what they are looking at and what action
 *  they took to trigger the Recommend request. Note that this user event
 *  detail won't be ingested to userEvent logs. Thus, a separate userEvent
 *  write request is required for event logging.
 *  Don't set
 *  UserEvent.user_pseudo_id google.cloud.discoveryengine.v1beta.UserEvent.user_pseudo_id 
 *  or
 *  UserEvent.user_info.user_id google.cloud.discoveryengine.v1beta.UserInfo.user_id 
 *  to the same fixed ID for different users. If you are trying to receive
 *  non-personalized recommendations (not recommended; this can negatively
 *  impact model performance), instead set
 *  UserEvent.user_pseudo_id google.cloud.discoveryengine.v1beta.UserEvent.user_pseudo_id 
 *  to a random unique ID and leave
 *  UserEvent.user_info.user_id google.cloud.discoveryengine.v1beta.UserInfo.user_id 
 *  unset.
 */
// const userEvent = {}
/**
 *  Maximum number of results to return. Set this property
 *  to the number of recommendation results needed. If zero, the service
 *  chooses a reasonable default. The maximum allowed value is 100. Values
 *  above 100 are set to 100.
 */
// const pageSize = 1234
/**
 *  Filter for restricting recommendation results with a length limit of 5,000
 *  characters. Currently, only filter expressions on the `filter_tags`
 *  attribute is supported.
 *  Examples:
 *   * `(filter_tags: ANY("Red", "Blue") OR filter_tags: ANY("Hot", "Cold"))`
 *   * `(filter_tags: ANY("Red", "Blue")) AND NOT (filter_tags: ANY("Green"))`
 *  If `attributeFilteringSyntax` is set to true under the `params` field, then
 *  attribute-based expressions are expected instead of the above described
 *  tag-based syntax. Examples:
 *   * (launguage: ANY("en", "es")) AND NOT (categories: ANY("Movie"))
 *   * (available: true) AND
 *     (launguage: ANY("en", "es")) OR (categories: ANY("Movie"))
 *  If your filter blocks all results, the API returns generic
 *  (unfiltered) popular Documents. If you only want results strictly matching
 *  the filters, set `strictFiltering` to `true` in
 *  RecommendRequest.params google.cloud.discoveryengine.v1beta.RecommendRequest.params 
 *  to receive empty results instead.
 *  Note that the API never returns
 *  Document google.cloud.discoveryengine.v1beta.Document s with
 *  `storageStatus` as `EXPIRED` or `DELETED` regardless of filter choices.
 */
// const filter = 'abc123'
/**
 *  Use validate only mode for this recommendation query. If set to `true`, a
 *  fake model is used that returns arbitrary Document IDs.
 *  Note that the validate only mode should only be used for testing the API,
 *  or if the model is not ready.
 */
// const validateOnly = true
/**
 *  Additional domain specific parameters for the recommendations.
 *  Allowed values:
 *  * `returnDocument`: Boolean. If set to `true`, the associated Document
 *     object is returned in
 *     RecommendResponse.RecommendationResult.document google.cloud.discoveryengine.v1beta.RecommendResponse.RecommendationResult.document.
 *  * `returnScore`: Boolean. If set to true, the recommendation score
 *     corresponding to each returned Document is set in
 *     RecommendResponse.RecommendationResult.metadata google.cloud.discoveryengine.v1beta.RecommendResponse.RecommendationResult.metadata.
 *     The given score indicates the probability of a Document conversion given
 *     the user's context and history.
 *  * `strictFiltering`: Boolean. True by default. If set to `false`, the
 *  service
 *     returns generic (unfiltered) popular Documents instead of empty if
 *     your filter blocks all recommendation results.
 *  * `diversityLevel`: String. Default empty. If set to be non-empty, then
 *     it needs to be one of:
 *      *  `no-diversity`
 *      *  `low-diversity`
 *      *  `medium-diversity`
 *      *  `high-diversity`
 *      *  `auto-diversity`
 *     This gives request-level control and adjusts recommendation results
 *     based on Document category.
 *  * `attributeFilteringSyntax`: Boolean. False by default. If set to true,
 *     the `filter` field is interpreted according to the new,
 *     attribute-based syntax.
 */
// const params = [1,2,3,4]
/**
 *  The user labels applied to a resource must meet the following requirements:
 *  * Each resource can have multiple labels, up to a maximum of 64.
 *  * Each label must be a key-value pair.
 *  * Keys have a minimum length of 1 character and a maximum length of 63
 *    characters and cannot be empty. Values can be empty and have a maximum
 *    length of 63 characters.
 *  * Keys and values can contain only lowercase letters, numeric characters,
 *    underscores, and dashes. All characters must use UTF-8 encoding, and
 *    international characters are allowed.
 *  * The key portion of a label must be unique. However, you can use the same
 *    key with multiple resources.
 *  * Keys must start with a lowercase letter or international character.
 *  See Requirements for
 *  labels (https://cloud.google.com/resource-manager/docs/creating-managing-labels#requirements)
 *  for more details.
 */
// const userLabels = [1,2,3,4]

// Imports the Discoveryengine library
const {RecommendationServiceClient} = require('@google-cloud/discoveryengine').v1beta;

// Instantiates a client
const discoveryengineClient = new RecommendationServiceClient();

async function callRecommend() {
  // Construct request
  const request = {
    servingConfig,
    userEvent,
  };

  // Run request
  const response = await discoveryengineClient.recommend(request);
  console.log(response);
}

callRecommend();

PHP

Para obtener más información, consulta la documentación de referencia de la API de AI Applications PHP.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

use Google\ApiCore\ApiException;
use Google\Cloud\DiscoveryEngine\V1beta\Client\RecommendationServiceClient;
use Google\Cloud\DiscoveryEngine\V1beta\RecommendRequest;
use Google\Cloud\DiscoveryEngine\V1beta\RecommendResponse;
use Google\Cloud\DiscoveryEngine\V1beta\UserEvent;

/**
 * Makes a recommendation, which requires a contextual user event.
 *
 * @param string $formattedServingConfig Full resource name of a
 *                                       [ServingConfig][google.cloud.discoveryengine.v1beta.ServingConfig]:
 *                                       `projects/&#42;/locations/global/collections/&#42;/engines/&#42;/servingConfigs/*`, or
 *                                       `projects/&#42;/locations/global/collections/&#42;/dataStores/&#42;/servingConfigs/*`
 *
 *                                       One default serving config is created along with your recommendation engine
 *                                       creation. The engine ID is used as the ID of the default serving
 *                                       config. For example, for Engine
 *                                       `projects/&#42;/locations/global/collections/&#42;/engines/my-engine`, you can use
 *                                       `projects/&#42;/locations/global/collections/&#42;/engines/my-engine/servingConfigs/my-engine`
 *                                       for your
 *                                       [RecommendationService.Recommend][google.cloud.discoveryengine.v1beta.RecommendationService.Recommend]
 *                                       requests. Please see
 *                                       {@see RecommendationServiceClient::servingConfigName()} for help formatting this field.
 * @param string $userEventEventType     User event type. Allowed values are:
 *
 *                                       Generic values:
 *
 *                                       * `search`: Search for Documents.
 *                                       * `view-item`: Detailed page view of a Document.
 *                                       * `view-item-list`: View of a panel or ordered list of Documents.
 *                                       * `view-home-page`: View of the home page.
 *                                       * `view-category-page`: View of a category page, e.g. Home > Men > Jeans
 *
 *                                       Retail-related values:
 *
 *                                       * `add-to-cart`: Add an item(s) to cart, e.g. in Retail online shopping
 *                                       * `purchase`: Purchase an item(s)
 *
 *                                       Media-related values:
 *
 *                                       * `media-play`: Start/resume watching a video, playing a song, etc.
 *                                       * `media-complete`: Finished or stopped midway through a video, song, etc.
 * @param string $userEventUserPseudoId  A unique identifier for tracking visitors.
 *
 *                                       For example, this could be implemented with an HTTP cookie, which should be
 *                                       able to uniquely identify a visitor on a single device. This unique
 *                                       identifier should not change if the visitor log in/out of the website.
 *
 *                                       Do not set the field to the same fixed ID for different users. This mixes
 *                                       the event history of those users together, which results in degraded model
 *                                       quality.
 *
 *                                       The field must be a UTF-8 encoded string with a length limit of 128
 *                                       characters. Otherwise, an `INVALID_ARGUMENT` error is returned.
 *
 *                                       The field should not contain PII or user-data. We recommend to use Google
 *                                       Analytics [Client
 *                                       ID](https://developers.google.com/analytics/devguides/collection/analyticsjs/field-reference#clientId)
 *                                       for this field.
 */
function recommend_sample(
    string $formattedServingConfig,
    string $userEventEventType,
    string $userEventUserPseudoId
): void {
    // Create a client.
    $recommendationServiceClient = new RecommendationServiceClient();

    // Prepare the request message.
    $userEvent = (new UserEvent())
        ->setEventType($userEventEventType)
        ->setUserPseudoId($userEventUserPseudoId);
    $request = (new RecommendRequest())
        ->setServingConfig($formattedServingConfig)
        ->setUserEvent($userEvent);

    // Call the API and handle any network failures.
    try {
        /** @var RecommendResponse $response */
        $response = $recommendationServiceClient->recommend($request);
        printf('Response data: %s' . PHP_EOL, $response->serializeToJsonString());
    } catch (ApiException $ex) {
        printf('Call failed with message: %s' . PHP_EOL, $ex->getMessage());
    }
}

/**
 * Helper to execute the sample.
 *
 * This sample has been automatically generated and should be regarded as a code
 * template only. It will require modifications to work:
 *  - It may require correct/in-range values for request initialization.
 *  - It may require specifying regional endpoints when creating the service client,
 *    please see the apiEndpoint client configuration option for more details.
 */
function callSample(): void
{
    $formattedServingConfig = RecommendationServiceClient::servingConfigName(
        '[PROJECT]',
        '[LOCATION]',
        '[DATA_STORE]',
        '[SERVING_CONFIG]'
    );
    $userEventEventType = '[EVENT_TYPE]';
    $userEventUserPseudoId = '[USER_PSEUDO_ID]';

    recommend_sample($formattedServingConfig, $userEventEventType, $userEventUserPseudoId);
}

Python

Para obtener más información, consulta la documentación de referencia de la API de AI Applications Python.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

# This snippet has been automatically generated and should be regarded as a
# code template only.
# It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
#   client as shown in:
#   https://googleapis.dev/python/google-api-core/latest/client_options.html
from google.cloud import discoveryengine_v1beta


def sample_recommend():
    # Create a client
    client = discoveryengine_v1beta.RecommendationServiceClient()

    # Initialize request argument(s)
    user_event = discoveryengine_v1beta.UserEvent()
    user_event.event_type = "event_type_value"
    user_event.user_pseudo_id = "user_pseudo_id_value"

    request = discoveryengine_v1beta.RecommendRequest(
        serving_config="serving_config_value",
        user_event=user_event,
    )

    # Make the request
    response = client.recommend(request=request)

    # Handle the response
    print(response)

Ruby

Para obtener más información, consulta la documentación de referencia de la API de AI Applications Ruby.

Para autenticarte en AI Applications, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

require "google/cloud/discovery_engine/v1beta"

##
# Snippet for the recommend call in the RecommendationService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DiscoveryEngine::V1beta::RecommendationService::Client#recommend.
#
def recommend
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DiscoveryEngine::V1beta::RecommendationService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DiscoveryEngine::V1beta::RecommendRequest.new

  # Call the recommend method.
  result = client.recommend request

  # The returned object is of type Google::Cloud::DiscoveryEngine::V1beta::RecommendResponse.
  p result
end