As part of the committed use discounts (CUDs) program expansion, we update the spend-based CUD model and provide tools to help you prepare for the changes, which include:
- BigQuery sample data export: A sample dataset that demonstrates how opting in changes the appearance of your spend-based CUD data exports in BigQuery.
- CUD KPI example queries: Example queries to use with the BigQuery sample data export to calculate important CUD key performance indicators (KPIs).
- New CUD details: Descriptions of new CUDs fields and data migration, for example new CUD Fee SKUs IDs, offer names, and consumption model IDs.
BigQuery sample data export
You can use the BigQuery sample data export to prepare your internal systems for the changes that occur in your spend-based CUD data. The process to use the sample data export has these main steps:
- Check the prerequisites.
- Enable the sample data export.
- Allow the new data to accumulate.
- Explore the new data model and queries.
- Update your internal systems and workflows accordingly.
Prerequisites
You must meet the following prerequisites to use the sample data export:
- You must have a detailed or standard billing data export configured for your Cloud Billing account. For more information, see Set up Cloud Billing data export to BigQuery.
You must have permissions on the project that owns the export, and permissions on the Cloud Billing account where you are enabling the export. For example:
bigquery.datasets.create
permission on the project that contains the dataset.billing.accounts.getUsageExportSpec
permission on the Cloud Billing account.
To find predefined Cloud Billing roles that contain these permissions, for example Billing Account Viewer, Billing Account Costs Manager, or Billing Account Administrator, see Cloud Billing access control and permissions. For more information about BigQuery-specific permissions, see BigQuery IAM roles and permissions.
When you create a new Cloud Billing account, proportional attribution is enabled by default for spend-based commitments. Otherwise, you must have enabled it in order to use this export. You can do so by following these instructions.
If you have VPC enabled for BigQuery resources on your project or organization, you need to create ingress and egress rules to properly enable this:
- Create an ingress rule that gives the individual access to create the export:
- ingressFrom: identities: - PRINCIPAL_ID_FOR_PERSON_ENABLING_SUBSCRIPTION sources: - accessLevel: "*" ingressTo: roles: - roles/bigquery.dataOwner resources: - projects/YOUR_PROJECT_ID_TO_HOST_SAMPLE_DATA title: 'Sample Export Ingress'
- Create an egress rule to enable Google Cloud to create the BigQuery Linked Dataset within the VPC:
- egressTo: roles: - roles/bigquery.dataOwner resources: - projects/710382390241 egressFrom: identityType: ANY_IDENTITY sources: - accessLevel: "*" sourceRestriction: RESTRICTION_STATUS title: 'Sample Export Egress'
Enable the sample data export
To enable the sample data export, complete the following steps:
Open the Billing export section of the Google Cloud console.
In the Billing export dialog, select the Cloud Billing account where you want to enable the sample data export, as shown in the following screen.
The data export process begins and takes approximately one day to be enabled. You'll see the following note until it is ready:
After you enable the sample data export, it starts collecting Cloud Billing data, with new data added continuously until January 2026. Allow adequate time for sufficient data to accumulate in the export before updating your systems to align with the new data model.
When the export is ready, you'll see the following notification in the Billing section of the Google Cloud console:
The data export is created as a linked dataset within the same BigQuery dataset that holds your detailed or standard billing data export. Because it is a linked dataset, you won't incur additional charges for the sample export. For more information, see Introduction to BigQuery sharing.
Click View Sample Dataset to open BigQuery in the Google Cloud console, where you can run queries to understand your important CUD KPIs.
Sample export limitations
The sample data export is a useful tool to prepare for the data model changes, but differs from real-world data exports in these important ways:
- Post-migration: Do not use the sample exports after you opt in to the new data model, because after that point the sample exports no longer be accurate.
- Output size: Due to data aggregation difference, the size of the sample export might vary from the actual export that you see after you opt in to these changes.
- Rounding methods: Due to rounding method differences, small discrepancies might occur in very small amounts or non-USD currencies.
- Prorated fees: The sample export might overestimate costs for the first and last hour of a CUD purchase, because it doesn't account for partial-hour commitment fees in the same way. Purchasing a spend-based CUD prorates the fee for the first hour.
Example data export before and after the new CUD model
The new spend-based CUD model requires you to plan and adjust your internal systems that might consume Cloud Billing data. As a result, we provide the following scenarios to show how the data export schema and data change, before and after the new CUD model. We further divide these scenarios into situations where you overutilize and underutilize your CUDs to show the affect on the data export.
For both scenarios, consider that you've purchased an E2-Standard-8
VM in US Central 1
, consisting of two SKUs for RAM and Core. These SKUs use the fictional ID of RAM SKU
and Core SKU
, respectively.
Then, you purchase a 1 Year GCE Flex CUD
for $0.1/hr for the overutilized scenario and $.3/hr for the underutilized scenario. These are represented in the data as the fictional ID Fee SKU
.
Overutilized CUD scenario
In the overutilized scenario, you made the previously mentioned purchases and overutilized the CUDs.
Data before
Before the new CUD model, your Cloud Billing export schema and data values look like the following table.
SKU | cost | usage.amount_in_pricing_units | usage.pricing_unit | price.effective_price | originating-sku 1 | subscription.instance_id | credits |
---|---|---|---|---|---|---|---|
Fee SKU | 0.046868 | 6.509490 | hour | 0.0072 | RAM SKU | subscriptions/e52fd279-0851-4f53-a533-093119e27bad | [] |
Fee SKU | 0.025132 | 3.490510 | hour | 0.0072 | Core SKU | subscriptions/e52fd279-0851-4f53-a533-093119e27bad | [] |
RAM SKU | 0.174496 | 8 | gibibyte hour | 0.02181159 | null | null | [{"amount":-0.065095,"full_name":"Committed use discount - dollar based: GCE Commitments", "type":"COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE"}] |
Core SKU | 0.093568 | 32 | hour | 0.00292353 | null | null | [{"amount":-0.034905,"full_name":"Committed use discount - dollar based: GCE Commitments", "type":"COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE"}] |
1. This column represents the value of the goog-originating-sku-id
label.
Data After
After the new CUD model, your Cloud Billing export schema and data values look like the following table.
SKU | cost | usage.amount_in_pricing_units | usage.pricing_unit | consumption_model.description | price.effective_price | originating-sku 1 | subscription.instance_id | credits |
---|---|---|---|---|---|---|---|---|
Fee SKU | 0.046868 | 0.046868330 | hour | Default | 1 | RAM SKU | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [{"amount":"-0.046868",""type":"FEE_UTILIZATION_OFFSET"}] |
Fee SKU | 0.025132 | 0.025131670 | hour | Default | 1 | Core SKU | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [{"amount":"-0.025132",""type":"FEE_UTILIZATION_OFFSET"}] |
RAM SKU | 0.109398 | 5.015577498 | gibibyte hour | Default | 0.02181159 | null | null | [] |
Core SKU | 0.058648 | 20.06066639 | hour | Default | 0.00292353 | null | null | [] |
RAM SKU | 0.046868 | 2.984422502 | gibibyte hour | Compute Flexible CUDs 1 Year | 0.01570434 | null | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [] |
Core SKU | 0.025132 | 11.93933361 | hour | Compute Flexible CUDs 1 Year | 0.00210494 | null | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [] |
1. This column represents the value of the goog-originating-sku-id
label.
Note the following in this new CUD model:
- There are two rows for each CUD, instead of one for each.
- There is a new
consumption_model.description
column that separates the additional CUD entries, where:- the
Compute Flexible CUDs 1 Year
value indicates that you received the expected CUD discount. - the
Default
value indicates that you overutilized the CUD, and your cost reverted to the default pricing for the overage amount. This is also indicated by thesubscription.instance_id
having no value. - the CUD fee rows also have the
Default
value, because discounts don't apply to them. Instead, thecredits
field indicates that a negative offset was applied to negate the fee.
- the
Underutilized CUD scenario
For this underutilized scenario, we assume you made the previously mentioned purchases and underutilized the CUDs.
Data before
Before the new CUD model, your Cloud Billing export schema and data values look like the following table.
SKU | cost | usage.amount_in_pricing_units | usage.pricing_unit | price.effective_price | originating-sku 1 | subscription.instance_id | credits |
Fee SKU | 0.022994 | 3.194 | hour | 0.0072 | null | subscriptions/e52fd279-0851-4f53-a533-093119e27bad | [] |
Fee SKU | 0.125637 | 17.450 | hour | 0.0072 | RAM SKU | subscriptions/e52fd279-0851-4f53-a533-093119e27bad | [] |
Fee SKU | 0.067369 | 9.357 | hour | 0.0072 | Core SKU | subscriptions/e52fd279-0851-4f53-a533-093119e27bad | [] |
RAM SKU | 0.174496 | 8 | gibibyte hour | 0.02181159 | null | null | [{"amount":-0.174496,"full_name":"Committed use discount - dollar based: GCE Commitments", "type":"COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE"}] |
Core SKU | 0.093568 | 32 | hour | 0.00292353 | null | null | [{"amount":-0.093568,"full_name":"Committed use discount - dollar based: GCE Commitments", "type":"COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE"}] |
1. This column represents the value of the goog-originating-sku-id
label.
Data After
After the new CUD model, your Cloud Billing export schema and data values look like the following table.
SKU | cost | usage.amount_in_pricing_units | usage.pricing_unit | price.effective_price | consumption_model.description | originating-sku 1 | subscription.instance_id | credits |
Fee SKU | 0.022994 | 0.0230 | hour | 1 | Default | null | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [] |
Fee SKU | 0.125637 | 0.1256371 | hour | 1 | Default | RAM SKU | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [{"amount":"-0.1256348",""type":"FEE_UTILIZATION_OFFSET"}] |
Fee SKU | 0.067369 | 0.0673690 | hour | 1 | Default | Core SKU | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [{"amount":"-0.0673581",""type":"FEE_UTILIZATION_OFFSET"}] |
RAM SKU | 0.125637 | 8 | gibibyte hour | 0.0157043448 | Compute Flexible CUDs 1 Year | null | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [] |
Core SKU | 0.067369 | 32 | hour | 0.0021049416 | Compute Flexible CUDs 1 Year | null | subscriptions/1fd3b130-40f8-4a79-ac6f-5753aaa0ceeb | [] |
1. This column represents the value of the goog-originating-sku-id
label.
Note the following in this new CUD model:
- There are two rows for each CUD, instead of one for each.
- There is a new
consumption_model.description
column that separates the additional CUD entries, where:- the
Compute Flexible CUDs 1 Year
value indicates that you received the expected CUD discount. - the
Default
value indicates the CUD fee rows, because discounts don't apply to them. Instead, thecredits
field indicates that a negative offset was applied to negate the fees, which were rolled up into the first row.
- the
- The first row shows a sum of the CUD fees.
Sample Queries for key CUD KPIs
You can use these important KPI metrics to validate that your systems are functioning well with the new data model:
- Commitment savings ($): Describes the savings that resulted from
your commitments. The metric uses the formula
(Cost of resources at on-demand rates - cost of resources with commitment discounts)
. - Commitment savings (%): Describes the savings percentage that
resulted from your commitments. The metric uses the formula
(Commitment savings / costs of resources at on-demand rates)*100
. - Commitment utilization (%): Measures how effectively you use your
commitments, expressed as a percentage. The metric uses the formula
(Commitment applied to eligible spend / total commitment)
. Effective savings rate (%): Explains the return on investment (ROI) for commitment discounts. The metric uses the formula
(Commitment Savings / On-Demand Equivalent Spend)
.To gain better insight into your cost data, the following BigQuery sample queries show how to retrieve useful information for the following KPIs.
Choose the correct sample query
To help you update your queries for the changes to the data model, we provide two versions of the KPI sample queries. Choose one of the following:
Sample KPI queries using the legacy data model
Use these sample queries if you aren't using the new data model.
These queries are only for Compute flexible CUDs. To query for other spend-based CUD products, you must change the following values:
cud_product
sku.description
credit.type
CUD cost plus CUD savings
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), cud_costs AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS cost FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2, 3 ), cud_credits AS ( SELECT invoice.month AS invoice_month, cud_product, service.id AS service, SUM(credit.amount) AS spend_cud_credits FROM cost_data, UNNEST(credits) AS credit JOIN cud_product_data ON REGEXP_CONTAINS( credit.full_name, cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2, 3 ) SELECT invoice_month, cud_product, cost As commitment_cost, -1 * (cost + IFNULL(spend_cud_credits, 0)) AS commitment_savings FROM cud_costs LEFT JOIN cud_credits USING (invoice_month, cud_product, service);
month
is the current year and month inYYYYMM
format, for example '202504'.
Commitment utilization
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), cud_commitment_amount AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, SUM(usage.amount_in_pricing_units / 100) AS commitment_amount, FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2 ), cud_utilized_commitment_amount AS ( SELECT invoice.month AS invoice_month, cud_product, ABS(SUM(credit.amount / currency_conversion_rate)) AS utilized_commitment_amount FROM cost_data, UNNEST(credits) AS credit JOIN cud_product_data ON REGEXP_CONTAINS( credit.full_name, cud_credit_regex) WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' GROUP BY 1, 2 ) SELECT invoice_month, cud_product, utilized_commitment_amount / commitment_amount *100 AS commitment_utilization FROM cud_commitment_amount LEFT JOIN cud_utilized_commitment_amount USING (invoice_month, cud_product);
month
is the current year and month inYYYYMM
format, for example '202504'.
Effective savings rate
WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_product_data AS ( SELECT * FROM UNNEST( [ STRUCT( 'Compute Engine Flexible CUDs' AS cud_product, 'Commitment - dollar based v1: GCE' AS cud_fee_regex, 'GCE Commitments' AS cud_credit_regex)]) ), eligible_cud_skus AS ( SELECT sku_id FROM example_project.dataset.flex_cud_skus ), eligible_cud_spend AS ( SELECT invoice.month AS invoice_month, SUM(cost) AS cost, SUM( IFNULL( ( SELECT SUM(credit.amount) FROM UNNEST(credits) AS credit WHERE credit.type IN ( 'COMMITTED_USAGE_DISCOUNT', 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE', 'DISCOUNT', 'FREE_TIER') ), 0)) AS costs_ineligible_for_cud, FROM cost_data JOIN eligible_cud_skus ON sku.id = sku_id GROUP BY 1 ), cud_costs AS ( SELECT invoice.month AS invoice_month, cud_product_data.cud_product, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS cost FROM cost_data JOIN cud_product_data ON REGEXP_CONTAINS( sku.description, cud_fee_regex) GROUP BY 1, 2, 3 ), cud_credits AS ( SELECT invoice.month AS invoice_month, SUM(credit.amount) AS spend_cud_credits FROM cost_data, UNNEST(credits) AS credit WHERE credit.type = 'COMMITTED_USAGE_DISCOUNT_DOLLAR_BASE' AND REGEXP_CONTAINS(credit.full_name, 'GCE Commitments') GROUP BY 1 ), cud_savings AS ( SELECT invoice_month, Cud_product, spend_cud_credits as spend_cud_credits, -1 * (cost + IFNULL(spend_cud_credits, 0)) AS commitment_savings FROM cud_costs LEFT JOIN cud_credits USING (invoice_month) ) SELECT Invoice_month, commitment_savings * 100 / (cost + costs_ineligible_for_cud - IFNULL(spend_cud_credits, 0)) AS effective_savings_rate FROM eligible_cud_spend LEFT JOIN cud_savings USING (invoice_month);
month
is the current year and month inYYYYMM
format, for example '202504'.
Sample KPI queries using the new data model
Use this sample query if you have adopted the new data model.
These queries are only for Compute flexible CUDs. To query for other spend-based CUD products, you must change the following values:
cud_fee_skus
consumption_model.id
SET bigquery_billing_project = billing-project-id; WITH cost_data AS ( SELECT * FROM project.dataset.gcp_billing_export_resource_v1_NNNNNN_NNNNNN_NNNNNN WHERE invoice.month = 'month' ), cud_fee_skus AS ( SELECT * FROM UNNEST( [ '5515-81A8-03A2', 'B22F-51BE-D599']) fee_sku_id ), cud_costs AS ( SELECT invoice.month AS invoice_month, subscription.instance_id AS subscription_instance_id, IFNULL( ( SELECT l.value FROM UNNEST(labels) l WHERE l.key = 'goog-originating-service-id' ), service.id) AS service, SUM(cost) AS commitment_cost, SUM( ( SELECT SUM(credit.amount) FROM UNNEST(credits) credit WHERE credit.type = 'FEE_UTILIZATION_OFFSET' )) AS fee_utilization_offset FROM cost_data JOIN cud_fee_skus ON fee_sku_id = sku.id GROUP BY 1, 2, 3 ), cud_savings AS ( SELECT invoice.month AS invoice_month, subscription.instance_id, service.id AS service, SUM(cost - cost_at_effective_price_default) AS cud_savings_amount, SUM(cost_at_effective_price_default) AS on_demand_costs FROM cost_data WHERE consumption_model.id IS NOT NULL AND consumption_model.id IN ('D97B-0795-975B','70D7-D1AB-12A4') GROUP BY 1, 2, 3 ) SELECT invoice_month, subscription_instance_id, service, commitment_cost, commitment_cost + fee_utilization_offset + IFNULL(cud_savings_amount, 0) AS commitment_savings, ABS(fee_utilization_offset) / commitment_cost * 100 AS cud_utilization_percent, (commitment_cost + fee_utilization_offset + IFNULL(cud_savings_amount, 0)) / IFNULL(on_demand_costs, 1) * 100 AS effective_savings_rate FROM cud_costs LEFT JOIN cud_savings USING (invoice_month, subscription_instance_id, service);
month
is the current year and month inYYYYMM
format, for example '202504'.
Cloud Billing export to BigQuery
The Cloud Billing export to BigQuery standard, detailed and rebilling (reseller only) data export, add or change the following fields:
Field | Type | New or updated | Description |
---|---|---|---|
price |
Struct | Existing (no change in detailed or rebilling export, adding to standard export.) | Fields that describe the structure and value related to the prices charged for usage. |
price.list_price |
Numeric | New field | SKU list price per the default consumption model. |
price.effective_price_default |
Numeric | New field | SKU price per the default consumption model per the custom pricing in the contract linked to your Cloud Billing account. |
price.list_price_consumption_model |
Numeric | New field | SKU list price per the applicable consumption model. |
price.effective_price |
Numeric | Existing (description updated in detailed and rebilling export; adding to standard export.) | SKU price per the applicable consumption model per the custom pricing in the contract linked to your Cloud Billing account. |
price.tier_start_amount |
Numeric | Existing in detailed export, adding to standard export. | The lower bound number of units for a SKU's pricing tier. |
price.unit |
String | Existing in detailed export, adding to standard export. | The unit of usage in which the pricing is specified and resource usage is measured. |
price.pricing_unit_quantity |
Numeric | Existing in detailed export, adding to standard export. | The SKU's pricing tier unit quantity. |
cost_at_list |
Numeric | Existing field, description updated to reflect changes. | Cost at list price. |
cost |
Numeric | Existing field, description updated to reflect changes. | Cost per the applicable consumption model that applies to your Cloud Billing account, calculated using the prices that apply to your billing account. If your Cloud Billing has custom, contract pricing, this is your billing-account-specific price; otherwise, this is the list price of the SKU or SKU tier. A consumption model represents the price of usage for a particular SKU. All billing accounts have the default consumption model when no CUD applies. Consumption model is only used for spend-based CUDs currently. |
cost_at_effective_price_default |
Numeric | New | Cost per the default consumption model per the custom pricing in the contract linked to your Cloud Billing account. |
cost_at_list_consumption_model |
Numeric | New | Cost per the applicable consumption model. |
consumption_model |
Struct | New | Fields that describe the applicable consumption model. |
consumption_model.id |
String | New | The ID of the consumption model. |
consumption_model.description |
String | New | The description of the consumption model. |
Price export changes
Cloud Billing export to BigQuery adds or changes these fields for pricing information:
Field | Type | New/Updated | Description |
---|---|---|---|
List_price |
Struct |
Updated | The list price of the Google Cloud or Google Maps Platform SKUs and SKU pricing tiers, in effect as of the pricing_as_of_time , with the default consumption model price. |
List_price.tieredrates.start_usage_amount |
Float |
Existing | Lower bound amount for a given list pricing tier, in pricing units. |
List_price.tieredrates.usd_amount |
Numeric |
Existing | The list price for the SKU, in US dollars. |
List_price.consumption_model_display_name |
String |
New | Display name for the consumption model. |
List_price.consumption_model_id |
String |
New | ID of the consumption model. |
Billing_account_price |
Struct |
Updated | If you have contract pricing, this is your custom SKU price from the contract that's linked to your Cloud Billing account, with the default consumption model price. |
Billing_account_price.tiered_rates.start_usage_amount |
Float |
Existing | Lower bound amount for a given billing account pricing tier, in pricing units. |
Billing_account_price.tiered_rates.usd_amount |
Numeric |
Existing | The billing account price for the SKU, in US dollars. |
Billing_account_price.tiered_rates.consumption_model_display_name |
String |
New | Display name for the consumption model. |
Billing_account_price.tiered_rates.consumption_model_id |
String |
New | ID of the consumption model. |
Consumption_Models |
List of structs | New | Both list price and billing account prices for the SKU, for all consumption models. |
Consumption_models.consumption_model_id |
String |
New | ID of the consumption model. |
Consumption_models.consumption_model_display_name |
String |
New | Display name for the consumption model. |
Consumption_models.list_price.tiered_rates.start_usage_amount |
Float |
New | Lower bound amount for a given list pricing tier, in pricing units. |
Consumption_models.list_price.tiered_rates.usd_amount |
Numeric |
New | The list price for the SKU, in US dollars. |
Consumption_models.billing_account_price.tiered_rates.start_usage_amount |
Float |
New | Lower bound amount for a given billing account pricing tier, in pricing units. |
Consumption_models.billing_account_price.tiered_rates.usd_amount |
Numeric |
New | The billing account price for the SKU, in US dollars. |
New CUD product information
New CUD fee SKUs replace the existing CUD fee SKUs, and new offer IDs and consumption model IDs apply to all in-scope CUDs. You can use the following details to help you adjust your queries and dashboards.
Offers and consumption model ID migration
The following table shows the Offers and Consumption model IDs that will migrate from the old to the new data model.
Product Name | Term | Old Offer ID | New Offer ID | Consumption Model ID |
---|---|---|---|---|
Cloud Run | 1 Year | 55435965-baf5-485f-baea-3fde53566e5e | 392802d4-e57b-40d3-9684-a1e8cdca6fb5 | 73A1-AD60-B867 |
Cloud Run | 3 Years | a8b22b6c-2992-48d3-9b73-98fc7a47d61c | 88a5fc51-d63b-4865-bf3b-c49e05a8c5c0 | A4B6-DEDF-1A65 |
Bigtable | 1 Year | 5a0a5567-1552-445e-9f1b-f1ac69fb0f39 | c0bf8ba5-65ee-4f7d-9e1e-3953433cf193 | A03A-2A56-8086 |
Bigtable | 3 Years | 26e8485e-acef-4e73-9a13-f0b2109befff | 460fb2ef-456d-4263-a070-4f993fa37996 | 4F61-4520-4936 |
Dataflow | 1 Year | 42ae4415-0361-404f-8bc5-1e7c041c2d82 | 127d79e4-1d52-48b0-9f31-8ba02586ff95 | 75D9-38E7-870F |
Dataflow | 3 Years | cac998b8-3d49-4672-ae5b-e5b3c56e05f2 | 03f4d3b1-44b8-4e88-9e75-b1d4e2d04573 | 9E06-4EF0-37D8 |
Memorystore for Redis | 1 Year | fe93270a-f338-4a76-b303-c323608a9d37 | 8e0da7cb-196b-4351-bc32-6a6ba94f1456 | DD5B-8EB3-C48D |
Memorystore for Redis | 3 Years | 8f20579e-7630-4592-8fa6-0d7d3b749354 | 2a3729ac-1e38-4a34-bc96-bd988028351f | 8E4B-B283-45D8 |
Cloud Spanner | 1 Year | 29829e5f-681c-4810-a471-8e4611a8042b | 359db5c2-8c2c-49e3-a21d-26176c4cd403 | 558C-892D-2291 |
Cloud Spanner | 3 Years | 709f6c69-8a49-4032-97f7-ce21fe340603 | a6a32e10-1d76-4df8-8485-eee10d08a1cf | 38C3-A961-A68B |
Kubernetes Engine | 1 Year | ae2672e6-47a8-41dc-9448-6956d7f4fbc1 | 2f48e468-a86a-452d-88df-edacd94a3c44 | 2F93-FEF4-BD6E |
Kubernetes Engine | 3 Years | fcf378c1-fbe0-4aaa-b05e-9597f8b45578 | 89027902-6f83-40aa-8861-7c2446b11015 | 6E88-5C17-F3E1 |
AlloyDB for PostgreSQL | 1 Year | adbca020-a973-48c9-b9b6-f5d70527790c | ff04ec3e-278c-4ec8-8278-12f875a8cea2 | C100-AA7B-33B1 |
AlloyDB for PostgreSQL | 3 Years | 56e5948f-f1ed-45ce-84d6-a8408092e7d5 | 9522b4d8-bff7-4141-81d6-b71d9113c69a | 4920-CA74-2184 |
Cloud SQL | 1 Year | 266e6a8c-2a0d-4b92-af9c-5795760f1fc9 | d31cf078-36a2-4a8a-a2e6-b23caec0e7a3 | 61F8-639B-D89C |
Cloud SQL | 3 Years | 4998bf0a-51dd-4ce0-8405-aa529dd86d33 | 48960309-1646-4fa2-9bf8-d7e72090d2b8 | 52FB-D69D-95BE |
Compute Flexible | 1 Year | ffe0f6a3-2f98-437e-8d49-fc443a05d3c2 | 1b2601a4-9d76-462d-bd5b-5b835d245f93 | D97B-0795-975B |
Compute Flexible | 3 Years | 062a285d-8989-4ce7-8f9a-bed8d183236f | 61612674-a9a9-4687-8449-baca71fbd0d1 | 70D7-D1AB-12A4 |
Managed Service for Apache Kafka | 1 Year | e1636f7d-1a29-4d53-a89e-c1f60e8dadcf | 647db981-009c-4e95-b62e-6aff19384956 | 03DE-CED5-0B0E |
Managed Service for Apache Kafka | 3 Years | 31d79333-0c0e-4208-9b20-c6e4f27e5d1d | 9a7ed994-d3df-4680-b4e6-7c3d932add66 | FBB4-D107-5857 |
Cloud Firestore | 1 Year | f8485012-b340-4562-8302-7e27d48f8cfd | de6aa077-3170-4250-89b6-0ccd470f9e21 | 3892-BA17-92A7 |
Cloud Firestore | 3 Years | 0b48b55a-1fa6-48bc-a3de-2d88f0b99e15 | e8f59240-c088-4a22-87c3-e58722cca300 | 2FD9-44B6-D2AC |
BigQuery | 1 Year | 6e72d4d4-5591-4c7f-aa9f-88d277d9280c | d73ae4d8-d096-4c9b-9c20-cd92c3c53724 | DD83-D9A3-79AF |
BigQuery | 3 Years | ad5539c4-a0d9-4abd-82c9-1104a7c8ad64 | f43d480d-3e77-4079-946c-e1b2ab640a8a | 4D8D-49A7-C5B1 |
Backup For Oracle | 1 Year | 5b446c4d-ce38-4d1a-8c76-e8b04ad50069 | 16e6132e-8a72-4a7f-8941-bf52246afc82 | AEA3-CEC2-9DF3 |
Backup For Oracle | 3 Years | 0dba7aa1-3215-4d44-9581-e1c34ca94471 | 1e028b05-4344-4bca-87e7-235ee3536354 | 224F-258C-7F84 |
CUD Fee SKU ID migration
The following tables show the CUD fee SKU IDs that migrate from the old to the new data model, per product.
Cloud Run
Old Fee SKU ID | New Fee SKU ID |
---|---|
3491-4A9E-B163 | 82DD-7D25-A063 |
15D9-4AD0-A9B7 | AB82-48AE-6F3A |
10A9-4C3F-BB16 | A1B8-DECC-D1F7 |
3301-404B-B3EF | E5D3-CEFB-02D4 |
CFB2-4EB2-9990 | 090D-54AC-DA77 |
8837-4C45-A7DA | 41C3-F36A-16D9 |
4867-4C8F-B76A | 02B2-B3FA-95FF |
C5B8-425D-97D5 | F4A5-B4CF-3788 |
E0CE-460F-8D64 | 46A3-E4AA-351A |
74A6-44D2-960C | 4407-BF28-CF37 |
7859-4826-8C52 | 19BF-9700-359E |
AA48-4683-AF1F | 8974-2D16-9117 |
B508-4B0F-B7BB | 2F4D-5F46-993B |
3BF1-4FB4-83F2 | BD61-7988-3E95 |
A57E-4819-AF94 | A716-5EEA-8CEE |
1B33-49CF-B32F | 1B45-09D5-5F07 |
1210-4E9B-A04D | BB5E-6431-CCA8 |
80E4-45AE-A1AF | 947D-BBB3-5380 |
BA12-4198-A539 | D9E1-9988-DB66 |
4C73-409B-A4F1 | 9169-B592-96AF |
865F-4611-92E1 | 931E-6A8E-E314 |
BF34-44E8-91A6 | 408B-0952-2677 |
15BA-4E4A-992E | 89BF-B220-F319 |
E00E-4B5F-B8BD | 1719-823D-05F0 |
ECF8-4229-BC67 | B1DA-56DC-EC9F |
973E-434A-801F | EA00-7F7B-944D |
3552-4DD3-A7E8 | 9CFC-DEAA-A82B |
4552-4772-A6F6 | 3898-3657-CECE |
06EA-D424-083A | E255-3419-0687 |
6FE3-4982-4D7A | 5F70-CBCF-4F13 |
D14C-4A3B-80A6 | 03CC-6BAC-3FE9 |
B202-4829-9B84 | 81D8-AFBA-BB76 |
20AE-4E52-B828 | F5E2-7791-3712 |
552F-4CC8-99A1 | 8BFE-E1FE-8066 |
A9CC-4C7B-A5D9 | DF3D-33E3-8AD0 |
9CB8-4FD1-8CD9 | 03DD-CE93-0CE3 |
33FF-492C-8385 | 7E0C-A90C-6CCB |
9422-4554-83D9 | C823-5E65-5B1E |
0638-44AB-9DF9 | 804C-2860-D291 |
5209-48D5-9FA5 | CEDA-B53B-B6DD |
7A23-4F77-BA5C | 5684-226D-B356 |
8187-444D-8CD0 | 047C-F7E7-E5CD |
13D2-4FA4-A8E0 | 4F47-9C0A-D62B |
7630-473A-8C92 | FE58-B5C7-E882 |
0B46-4BA0-913E | 3B69-08EE-4E6E |
EB81-4CDD-94E4 | 2488-2C37-724F |
83A5-422F-8FBB | 2A9F-A082-92D7 |
100C-4499-9C9B | 5B2A-EE57-91E3 |
BCDC-49BB-9D32 | E9C0-4BCD-7D32 |
18F0-430F-9067 | B9A5-A3B0-D95F |
B13B-4D35-9798 | FCC6-5787-1F3C |
BD0A-4FBC-8912 | 9FA3-FFEA-92BC |
4E43-44D2-82BC | 309B-91F8-C95D |
1127-425D-A3C0 | 738D-8CAD-9A3B |
4FF9-4DDE-8B5D | 4CC1-460A-9FF1 |
7608-491D-B962 | 7011-33D8-298B |
8C7A-4ABA-A82B | 4284-87CF-A006 |
A650-43B3-A5E6 | 3BFB-24B0-73E4 |
71AA-41B0-9A01 | 691E-644F-6644 |
59DD-4247-B7F7 | CC1A-95E6-D6EB |
BCBA-4D9D-9F55 | 2A32-2138-B345 |
95C7-472A-AED4 | 30ED-3509-C62D |
0760-B78B-9026 | DDC3-5FD5-A0B6 |
A1F6-87A0-FE7E | A8FA-9147-ABB5 |
21D4-45D3-9D60 | 1EE3-51D2-3396 |
5485-49C0-B8EB | B0B4-343F-135D |
4CBE-4359-9150 | 6093-28F8-6788 |
C51F-4A06-9E7C | F33E-8239-F352 |
F62F-4B66-9291 | 9FB6-C854-5100 |
6B98-4F1A-B5B5 | FAF0-0ECD-9314 |
CAFE-418A-853C | EAAC-55EA-2E64 |
420E-4559-A155 | BCF2-B50C-03B9 |
DA27-406E-B0B0 | 52EA-5CFF-7F43 |
E147-4670-92DC | 7E41-C976-49DD |
8B4F-4C3D-9FDA | 4E7A-8DA1-AD53 |
F0E7-4A07-828B | FDDF-1F04-6258 |
51BF-496E-97B0 | 3485-48FC-C988 |
D83D-43BD-9CE9 | 1E98-BE57-4954 |
FFFE-459E-AA3A | 29A9-0609-9125 |
879E-4DD5-9563 | 6683-573B-AEBF |
A342-4583-9883 | 514E-BB03-A6F5 |
6CEC-4088-9057 | 9EF2-4BCB-6A7A |
288E-4410-B596 | 3071-1939-D0B5 |
02B6-47BE-9322 | 9CA4-124C-2041 |
059C-46F1-9D30 | 1E77-1051-139B |
0208-4868-BB79 | 75EF-1DBD-84EA |
A37A-4CBB-8C2A | 54B3-12CB-2105 |
3AB6-4ED4-9DFD | 8F45-B49A-430F |
C39C-4F0E-8356 | 3F20-8CC9-6406 |
8E40-4212-9075 | 37C7-19B2-BE1B |
8B23-49BA-A445 | 56B5-8B48-DAA8 |
FFDA-4C02-97F5 | B2E8-0BA2-6F9E |
Bigtable
Old Fee SKU ID | New Fee SKU ID |
---|---|
B5A6-424E-9B40 | 3A81-0BBB-DB6B |
D0B1-4BBE-B88E | 80F1-1914-BE00 |
Dataflow
Old Fee SKU ID | New Fee SKU ID |
---|---|
B010-4451-8FE0 | 9E04-DE04-2E16 |
A151-46E9-B512 | 09B2-AF74-BAD1 |
Memorystore For Redis
Old Fee SKU ID | New Fee SKU ID |
---|---|
15A2-40AC-9DCD | 8C3A-9182-D105 |
C4C9-475B-BEFF | EF24-D476-1BAD |
Cloud Spanner
Old Fee SKU ID | New Fee SKU ID |
---|---|
131F-4968-89D1 | 3238-2675-F039 |
75AD-448A-95DE | 80C0-BC99-0991 |
Kubernetes Engine
Old Fee SKU ID | New Fee SKU ID |
---|---|
8AC5-995C-49BE | CC42-04B0-71A9 |
4643-4C68-3D9E | 080E-0344-2B2F |
D4CC-4550-92C1 | 237A-224A-C622 |
292A-4422-B188 | 9607-3DD9-8D78 |
CAFC-43E1-9291 | 6FFC-4E81-8ECA |
CA8D-496F-86F4 | D634-1142-E1DD |
787B-46D9-80CC | 825F-9C72-CE1C |
FEAB-4A93-849F | F986-9574-3D32 |
3D8D-4826-AE85 | EC2F-D6E6-6DC2 |
28C5-4353-B536 | 2279-940A-C438 |
3F48-4DB8-A865 | 2ED8-47E3-FCF4 |
1566-42A4-931C | 282D-9866-204C |
050E-4401-87A1 | CA20-3B01-28F7 |
CDB8-47E5-A134 | 59AF-8D6A-6F93 |
A38D-42A4-AB93 | 9B4B-9C98-A1C1 |
0C28-42D3-9354 | BF16-00E1-9106 |
22D5-4505-87E0 | A045-427D-09F5 |
5406-46FC-B538 | FD8F-FDDC-078F |
69BD-4ED5-A9D4 | 8572-D615-AD9D |
AB2C-4C01-B3AE | 3630-EF1B-2849 |
9940-4B80-8F2D | DF19-A1EF-AC84 |
29B1-476B-A3DB | B6D8-7A7B-2327 |
1E09-4D6B-A08F | 1DD6-B96F-9F27 |
48DF-4B4E-82A6 | 5FAA-AF2F-2CFF |
CFB5-43DC-A225 | DB7F-F9C1-F79F |
6E00-453A-AD09 | 8E6B-7160-6255 |
6E7C-45B4-A4AC | 2EFE-41D6-A0C2 |
7792-4C59-A018 | 10F6-AFF0-0AFF |
2FA1-3003-EB9D | 960E-36EC-8042 |
7713-78D0-0F12 | 3E91-E048-B73C |
C468-411F-855C | 1256-77D9-0785 |
AE7A-43D7-92D6 | A816-98F0-52A4 |
8C09-9532-9994 | 1FA3-D1FF-DF7D |
126A-5503-0210 | E225-278E-E970 |
1C8A-2D9A-EF3A | 544B-6343-3D8A |
7246-58AB-2C77 | 2426-FF2F-0C1A |
CBA4-4F0A-B6EA | 0506-34EE-01BB |
8118-4430-9AE6 | B1D8-AED9-A5BA |
3346-4681-9789 | D2AF-530E-0C1E |
68AA-48D8-BACB | 4770-2E09-F22D |
8994-46B7-8815 | 24E8-5C67-2FA1 |
28D9-45E5-A3DD | 9650-1FA3-E633 |
2B69-4C94-BF9E | 6BBB-0D1E-F6A0 |
3786-4FA4-BFC4 | B1F5-F09E-9D52 |
7706-4477-A57C | 92A3-6AD1-1CDC |
87D6-42D9-9F62 | BBD9-D7C3-575B |
21E7-322C-27F2 | E01E-1EF6-7971 |
341E-CEB6-046E | D90C-946F-2B5E |
AD40-52E0-FE6C | F6DF-FCCA-46C5 |
802C-66F0-3337 | D66E-D04C-046D |
8B7F-F32F-26D1 | 1F34-433C-2846 |
1AA3-04A4-3E0D | A7A1-5FAE-4B5E |
BC4D-78A4-A637 | 3EAD-2395-D76A |
BEAC-8E7A-2D03 | FA9B-EA76-BBF8 |
76D0-2F62-2BF8 | 49AB-FEFE-1FFC |
AA6F-4C19-BF8F | B1B4-5EBE-BCD2 |
28B5-4B48-81D9 | 86DF-B23C-E1CD |
ADDA-42C7-B88E | 90EC-1D9C-7D21 |
46F2-47A7-33EF | E6E7-57D4-9C0A |
C2A4-1557-17BB | 148C-E8E8-47DB |
960E-4BAF-BA31 | 1653-1F57-D31D |
AF6C-4CFA-A138 | 876B-D94C-91BA |
E753-8F76-0172 | D911-23CD-56DF |
4E22-CFF4-F8B5 | 6525-244F-BA05 |
E007-44F3-AB00 | 6408-2258-A93E |
D137-4062-A817 | F6D4-F4E6-A4E9 |
2951-40E8-9F50 | 65FB-4059-F5FE |
85A6-4DDF-A844 | CA80-AC52-9C98 |
4147-4BB2-B0AE | 3AFE-F408-82E4 |
69E0-47B1-8E89 | 1231-1AEB-C12D |
4010-49AF-81F2 | E84C-D51D-8BD9 |
D864-472C-A694 | 5CDA-E09B-6022 |
243F-A48C-F7EF | 6D26-164E-1A01 |
6078-4495-46F5 | 1311-7F3B-818F |
93F1-4469-DABE | EB76-19CB-4ACB |
C155-5C1F-4255 | 4DA3-B935-AE67 |
2E22-DE3D-8183 | 67F0-37CB-3E46 |
1C2C-3A27-09A4 | 8E2A-C5BF-989A |
90DA-4F69-9BF0 | 5124-2121-DC46 |
1DEA-4A3A-BE97 | 249B-0942-FD5B |
AD12-4E74-AB33 | 2201-9FE1-AE72 |
1206-4292-B7B5 | BFC1-4238-31C5 |
60D1-4AAA-AEBB | 99FF-B3FC-0977 |
199A-4EFA-A898 | 360A-0EDD-20F6 |
1A3B-4A36-878D | A628-E73A-A7D9 |
C83E-4CDC-8D3A | 9022-BB2D-48FD |
2BFF-48AA-1752 | 7D54-59A4-DB94 |
DF97-6D3D-692F | EC34-4E0B-667F |
AlloyDB For PostgreSQL
Old Fee SKU ID | New Fee SKU ID |
---|---|
7734-4CEB-A7D9 | 98FC-4179-825D |
9486-406B-8ED7 | 1989-EC4C-1D98 |
Cloud SQL
Old Fee SKU ID | New Fee SKU ID |
---|---|
9D5B-87A9-EAC3 | 7BE0-E374-B1EB |
A770-1549-F8EA | 2F30-30DA-482C |
CF8D-4BC1-B957 | 2080-5BCD-9F5B |
3FE2-4DD8-B090 | A007-6570-4B0B |
3673-4665-96DC | 2D3A-EB5A-D80A |
F4E5-4E4C-9EC6 | ACB8-45AE-4E5F |
C242-48A2-A571 | 7A59-B85C-DFC6 |
1D4C-45A7-B37E | D32B-2B6E-5CA3 |
488D-482D-9543 | 0F65-F4F8-9ADD |
B770-4F2C-87A0 | 0988-3A03-D2D0 |
CEFD-4948-9339 | FC83-C9EF-C4EB |
2E6B-409B-9759 | EEF1-4F76-CAC5 |
0667-4EED-A427 | 7878-600A-64CC |
F731-4BC8-B099 | 8BF0-605D-DCAD |
6098-26E0-DA90 | F8FE-F09B-8D35 |
3D97-72FB-A745 | 7E81-74D4-4C48 |
B4F3-4753-84D8 | B247-B6A5-B42B |
8BC6-431C-83A0 | 7F34-9E6B-7BC9 |
2222-A6FD-1B34 | 6C75-9500-A545 |
52F4-C022-9628 | 696E-7A2B-022B |
1CEC-44BF-A72F | F1D9-293C-905B |
40B4-4A3F-9ADE | 0B7E-2F8F-2091 |
5C18-C0DE-424C | E8EE-4E7C-A1BF |
E2C2-75CF-0834 | FAD7-E6E2-FDEC |
82AD-EFDB-31EB | B316-B58B-DB2F |
A462-30B5-2815 | 2C5E-F50B-ABA3 |
08CF-4B12-9DDF | 6DA1-960A-8264 |
9A44-4649-A4BA | 5F97-E2D9-D908 |
1D65-0D70-30D9 | 7D50-89D5-ADA7 |
42AE-51A3-4BA6 | 8EB6-5293-4347 |
AC25-43CD-B2CF | BCE7-3E2D-E6B4 |
5BBD-4280-BDAA | 3969-6A93-428C |
4E88-49D2-A8CA | 676C-96F3-A28B |
2F5E-1738-A349 | 1D2B-767A-C27A |
EF34-C6E5-642A | A63F-26C0-0B5D |
D828-2DE2-B6E9 | 6EC2-F52B-AFDC |
BB36-4ABF-964B | C6AF-A820-F06F |
0B80-4201-92E9 | 2815-72DD-688F |
D74A-49A5-A0F3 | D70C-6262-E655 |
AEE9-48F0-8F1B | 04DE-7EE7-4993 |
4752-4CCD-A896 | 5D05-BF2A-90B6 |
1046-418C-80D5 | 8225-3967-A427 |
D948-7796-816E | 3B87-C788-A1F7 |
9705-467B-A0C7 | 4D55-316F-A430 |
E5E4-4AAB-8E72 | 6CD7-D35C-F75E |
7D57-410C-88E6 | CB3A-4E59-80BB |
BB27-9695-34DB | 1440-FD58-A7E1 |
43C1-1E6F-B339 | 175F-18C1-FFAC |
7B24-9F72-4868 | 025D-CDA8-6051 |
1585-37B8-2C7C | 4D4A-15C1-8651 |
FD3D-B041-5D8B | 01B6-1103-473E |
FA42-12B8-92F4 | E40E-9744-A5C7 |
D495-4DEF-5C3D | 49F7-68DD-3287 |
50B7-9B49-78AD | 2F50-AA2C-17E8 |
CB27-32EF-3A69 | CE5E-FF5D-E8E4 |
052B-DDF0-EF60 | BE7D-D12F-2FE7 |
C978-4C07-962E | 76A9-FC9C-60AB |
313C-4901-A0DF | 5912-F0F8-9BB2 |
BB74-D061-874C | A5FC-B0A2-23C0 |
1B05-93AA-D889 | 644E-57BA-68FE |
1E40-0BE2-0127 | 245F-F68B-DC02 |
A8A3-DA81-5FC1 | A707-293C-E2F8 |
5DBA-4145-8DA5 | 7FD7-0B89-CD20 |
6D15-4BF1-8C40 | 2002-A615-BF6B |
D7C4-37F2-B8FA | B9B3-307F-28D9 |
4AA3-5BA3-56C2 | 7427-1C2E-1FB5 |
21EA-441C-A33F | 7424-6E54-5CD0 |
0B85-44DC-8DB0 | 6C6B-13F3-10E4 |
8AA4-4E86-978A | 4E2B-C2E9-DB94 |
2724-478C-985F | 249B-CA7E-76BD |
EA96-4BD2-8085 | 33D8-2A9A-DAEE |
5E58-40A1-99ED | 1EFF-46BA-57F9 |
C388-21EC-0FBE | 4AE3-2CBF-8EAA |
2339-A716-18EA | 53EA-4696-1650 |
F250-468F-B2AE | 0529-A8D8-BF5A |
8165-F576-1404 | A26C-35CA-F0B8 |
19DE-C9CA-DDC6 | 7498-BC05-A2E1 |
447B-6CF7-811F | 116E-20AE-C903 |
65FF-4DA1-9D5B | 53E6-C7B8-C112 |
E666-4D19-9465 | CA16-1FA5-F7E4 |
B2D6-4532-8EC8 | D09C-4C1F-E156 |
DF06-4741-84C3 | ECC5-8690-6A62 |
199A-4F7E-815F | F8A8-74F4-4FA3 |
DFEF-4140-B12C | 97E5-A7CD-1BF3 |
0DB3-69AD-F2E0 | F71D-B6A4-310F |
28F7-A86D-E3AD | 3030-C394-9387 |
Compute Flexible
Old Fee SKU ID | New Fee SKU ID |
---|---|
F61D-4D51-AAFC | 5515-81A8-03A2 |
6723-40D7-8BDC | B22F-51BE-D599 |
Managed Service For Apache Kafka
Old Fee SKU ID | New Fee SKU ID |
---|---|
8A47-8B1D-C883 | 6B52-5BF3-396B |
02BD-82A5-FB44 | 0480-9719-DA84 |
BigQuery
Old Fee SKU ID | New Fee SKU ID |
---|---|
5C25-BA1C-6AC3 | F000-3255-30F7 |
85A1-A5CB-A253 | A133-260C-A5ED |
1089-2A27-7730 | D1D5-1109-F1BE |
22CF-7E63-10C5 | DA54-C6B9-3587 |
FC38-FFBD-D72C | A6C1-CEAD-E3EA |
61AD-1D3B-D83A | B7D3-119B-713F |
7A19-ACF7-3170 | 81A9-185D-8B9E |
8F1D-ADEC-2837 | B769-CB81-7010 |
E1FD-1AAE-BAC3 | CE9C-6026-EAF1 |
BA9B-1B34-062D | 126B-1147-892C |
B518-6B3B-41BE | E548-4400-D30A |
BC97-D9AC-36B6 | 1EFB-B150-3E5E |
F5B4-8B94-2EEC | 67E8-E098-A01A |
16C8-7C38-3239 | 49DB-2BB3-94C9 |
7637-096D-622B | 1381-E895-3149 |
FEB4-715D-30FF | 70B5-F887-399D |
E116-56B9-FB0A | F28C-5980-130D |
380B-3E0B-FD7E | A18F-AF50-E629 |
E251-BF64-0789 | 37F2-2F57-7D71 |
4B5D-E66F-A172 | A804-A110-F1AA |
CDDF-5E64-7B2D | 86CC-F087-FEBE |
5DD6-DA23-9199 | 3814-70D6-EC39 |
F2E5-5205-B520 | EF36-D8BC-BF62 |
51AD-E0EB-150A | 3893-D7F1-5961 |
C279-46E5-BC9D | 993D-3AFA-2C6D |
C102-E006-F6FD | F8BA-95FE-EA91 |
38C2-4F8B-B035 | 0004-187C-DE75 |
32A8-9021-5BD5 | C04C-B96D-4A84 |
23F5-5744-16EB | 15AA-0087-D18E |
A2C7-4AD6-A2C6 | 9AE8-2B2E-9464 |
3166-210F-DE55 | 1D65-1DCA-05FE |
F2F0-0F54-689D | 1F53-D6C9-B57A |
74F4-4E1B-06EF | 8CFB-26B1-CF35 |
F65E-9014-E2CF | 77AE-7A35-21AF |
32A8-1856-364F | D707-19EF-8882 |
6D08-0C10-CF4F | 2AB8-0AC7-CDA1 |
9D7D-D20E-6C52 | F219-044A-0599 |
23AB-C773-7CCB | 3F16-8F6A-3A2E |
5B41-2E03-EE6B | FA89-BCC4-7723 |
72FB-2DE8-9CF3 | 474C-4EC7-9153 |
F397-9DD1-8408 | 34A7-AD9B-B373 |
47BD-22A8-B9FA | C493-8773-3DC3 |
B8F4-F944-3999 | 7DC0-4FE2-7D72 |
5A1D-25D0-4DD4 | 6DC6-A111-AF25 |
A8C9-8053-F4C3 | 9902-D4A8-4DDD |
FE8E-B140-8A2B | 416E-5116-4B9F |
44DD-7AB8-81B7 | FE3E-6C65-B711 |
41D5-58D9-B80D | 0187-7D96-8A07 |
8F29-24C6-F828 | DBAC-DC77-7C2E |
EE58-E484-950D | CA44-8A5B-0CAE |
B3F0-B4AA-5ABE | 91D5-8E34-A91B |
C401-6820-D68F | C656-B0D7-DE2D |
677E-AF33-A71C | E617-E502-440B |
48D9-5554-B194 | 4BCC-3982-623D |
2A6A-75A1-8052 | 7CD3-FB97-83F7 |
43C7-F7A2-2DF1 | 6DB0-16B2-7D11 |
A187-636B-D5A3 | 6D66-35BE-F070 |
5A75-1900-8479 | 5249-BD73-90B0 |
5E39-16C7-C280 | C29B-E97D-DE4B |
FC92-0AE2-5B99 | 4553-C64D-DAF5 |
FB7B-18F0-24BF | F3DF-45A6-AAF7 |
5A3A-2581-6A90 | 64FB-50DE-2B78 |
7EE8-7905-E68A | B296-6C48-B00A |
729B-5A59-EC36 | 674E-B7E3-9EDC |
DDAD-F25F-F336 | E883-C2B3-8B4E |
091C-95A6-E3A9 | 6AB4-06A7-EE13 |
C19D-100F-DEC0 | 80E8-6BBE-9163 |
09CF-F2CD-F4CC | 7592-C1C2-0D77 |
6CB5-3496-932C | 0A90-CD4E-D30E |
6C6D-A7DB-97E9 | 3869-FAC2-CCA2 |
995B-4155-179A | 1488-9EA4-3E18 |
845D-60E9-0120 | 173E-4EF9-FC23 |
7E0C-F2E7-C1F1 | 0B18-F5D9-DACC |
5E9E-8E31-FEE2 | 5514-A3D6-79FC |
5DE9-5597-C15E | 249F-ADE9-7DED |
1D9E-3390-78AC | 6234-FBD2-BB63 |
BC9A-0555-CADE | B713-BA02-ED74 |
04E0-4165-0061 | B272-5B4D-D466 |
9009-F18E-930D | 804C-DE02-60F4 |
8E10-56F3-B2E2 | 1222-7D7D-FC15 |
A1C6-0ABC-B0C2 | 4C12-1B3C-D796 |
5F0C-E6BB-9AF1 | 977D-C6F2-A8A4 |
8DD7-E7F8-FD4E | 37C3-EFCF-3DD3 |
D77C-204C-E1DC | 00AE-16F3-50C5 |
4BD0-DA84-69FE | D4D0-3E8D-7C4B |
1227-9303-9DF2 | 160B-98BE-D874 |
177D-91E7-05D7 | 2144-0A92-A45A |
6659-6ACE-4D24 | 264D-9FB8-F290 |
8C0C-CB94-91B4 | CC5A-B5E1-BE39 |
A5D1-411A-BE45 | 458E-86C9-D76E |
F949-A74B-2E23 | 7652-043A-65C9 |
8864-725F-B5C2 | 08D3-11AC-E124 |
Cloud Firestore
Old Fee SKU ID | New Fee SKU ID |
---|---|
250C-5A4E-27F9 | 6849-C9A1-9662 |
63F9-F5D7-D6BC | 2CF5-3983-EA95 |
Backup and DR for Oracle
Old Fee SKU ID | New Fee SKU ID |
---|---|
7938-39D4-78B6 | DA30-A778-1421 |
73D2-5A5A-CB09 | 0D95-F79A-4CFA |
Related topics
- Learn about spend-based CUDs program improvements.