Escritura de streaming en Apache Iceberg con el catálogo REST de BigLake

Para escribir desde Dataflow en Apache Iceberg mediante el catálogo REST de BigLake, usa el conector de E/S gestionado.

La E/gestionada admite las siguientes funciones de Apache Iceberg:

Catálogos
  • Hadoop
  • Hive
  • Catálogos basados en REST
  • Metastore de BigQuery (requiere el SDK de Apache Beam 2.62.0 o una versión posterior si no se usa Runner v2)
Funciones de lectura Lectura por lotes
Funciones de escritura

En el caso de las tablas de BigQuery para Apache Iceberg, usa el conector BigQueryIO con la API Storage de BigQuery. La tabla ya debe existir. No se admite la creación de tablas dinámicas.

Requisitos previos

Configura BigLake. Configura tu proyecto de Google Cloud Platform con los permisos necesarios siguiendo las instrucciones de Usar BigLake Metastore con el catálogo REST de Iceberg. Asegúrate de que conoces las limitaciones del catálogo REST de Iceberg de BigLake que se describen en esa página.

Dependencias

Añade las siguientes dependencias a tu proyecto:

Java

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-managed</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.beam</groupId>
  <artifactId>beam-sdks-java-io-iceberg</artifactId>
  <version>${beam.version}</version>
</dependency>

<dependency>
  <groupId>org.apache.iceberg</groupId>
  <artifactId>iceberg-gcp</artifactId>
  <version>${iceberg.version}</version>
</dependency>

Ejemplo

En el siguiente ejemplo se muestra una canalización de streaming que escribe datos en una tabla de Apache Iceberg mediante el catálogo REST, respaldado por BigLake Metastore.

Java

Para autenticarte en Dataflow, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

import com.google.auth.oauth2.GoogleCredentials;
import com.google.common.collect.ImmutableMap;
import java.io.IOException;
import java.util.Map;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.coders.RowCoder;
import org.apache.beam.sdk.extensions.gcp.options.GcpOptions;
import org.apache.beam.sdk.io.GenerateSequence;
import org.apache.beam.sdk.managed.Managed;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.StreamingOptions;
import org.apache.beam.sdk.options.Validation;
import org.apache.beam.sdk.schemas.Schema;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.values.Row;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.joda.time.Duration;

/**
 * A streaming pipeline that writes data to an Iceberg table using the REST catalog.
 *
 * <p>This example demonstrates writing to an Iceberg table backed by the BigLake Metastore. For
 * more information on BigLake, see the documentation at
 * https://cloud.google.com/bigquery/docs/blms-rest-catalog.
 */
public class ApacheIcebergRestCatalogStreamingWrite {

  // The schema for the generated records.
  public static final Schema SCHEMA =
      Schema.builder().addStringField("user_id").addInt64Field("click_count").build();

  /** Pipeline options for this example. */
  public interface Options extends GcpOptions, StreamingOptions {
    @Description(
        "Warehouse location where the table's data will be written to. "
            + "BigLake only supports Single Region buckets")
    @Validation.Required
    String getWarehouse();

    void setWarehouse(String warehouse);

    @Description("The URI for the REST catalog")
    @Validation.Required
    @Default.String("https://biglake.googleapis.com/iceberg/v1beta/restcatalog")
    String getCatalogUri();

    void setCatalogUri(String value);

    @Description("The name of the table to write to")
    @Validation.Required
    String getIcebergTable();

    void setIcebergTable(String value);

    @Description("The name of the Apache Iceberg catalog")
    @Validation.Required
    String getCatalogName();

    void setCatalogName(String catalogName);
  }

  /**
   * The main entry point for the pipeline.
   *
   * @param args Command-line arguments
   * @throws IOException If there is an issue with Google Credentials
   */
  public static void main(String[] args) throws IOException {
    Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    options.setStreaming(true);

    // Note: The token expires in 1 hour. Users may need to re-run the pipeline.
    // Future updates to Iceberg and the BigLake Metastore will support token refreshing.
    Map<String, String> catalogProps =
        ImmutableMap.<String, String>builder()
            .put("type", "rest")
            .put("uri", options.getCatalogUri())
            .put("warehouse", options.getWarehouse())
            .put("header.x-goog-user-project", options.getProject())
            .put(
                "header.Authorization",
                "Bearer "
                    + GoogleCredentials.getApplicationDefault()
                        .createScoped("https://www.googleapis.com/auth/cloud-platform")
                        .refreshAccessToken()
                        .getTokenValue())
            .put("rest-metrics-reporting-enabled", "false")
            .build();

    Map<String, Object> icebergWriteConfig =
        ImmutableMap.<String, Object>builder()
            .put("table", options.getIcebergTable())
            .put("catalog_properties", catalogProps)
            .put("catalog_name", options.getCatalogName())
            .put("triggering_frequency_seconds", 20)
            .build();

    Pipeline p = Pipeline.create(options);

    p.apply(
            "GenerateSequence",
            GenerateSequence.from(0).withRate(1, Duration.standardSeconds(5)))
        .apply(
            "ConvertToRows",
            MapElements.into(TypeDescriptors.rows())
                .via(
                    i ->
                        Row.withSchema(SCHEMA)
                            .withFieldValue("user_id", "user-" + (i % 10))
                            .withFieldValue("click_count", i % 100)
                            .build()))
        .setCoder(RowCoder.of(SCHEMA))
        .apply("WriteToIceberg", Managed.write(Managed.ICEBERG).withConfig(icebergWriteConfig));

    p.run();
  }
}

Siguientes pasos