Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
O Apache Beam simplifica o fluxo de trabalho de enriquecimento de dados fornecendo uma transformação de aprimoramento pronta para uso que pode ser adicionada ao pipeline. Nesta página, explicamos como
usar a transformação do Apache Beam para aprimorar dados de streaming.
Ao aprimorar dados, você aumenta a quantidade de dados brutos de uma fonte, adicionando dados relacionados de uma segunda fonte. Os dados adicionais podem vir de várias fontes, como o Bigtable ou o BigQuery. A transformação de aprimoramento do Apache Beam usa uma pesquisa de chave-valor para conectar os dados adicionais aos dados brutos.
Os exemplos a seguir mostram alguns casos em que o aprimoramento de dados é útil:
Você quer criar um pipeline de e-commerce que capture as atividades do usuário em um
site ou app e forneça recomendações personalizadas. A transformação incorpora as atividades nos dados do pipeline para que você possa fornecer as recomendações personalizadas.
Você tem dados do usuários que gostaria de combinar com dados geográficos para fazer análises com base na região geográfica.
Você quer criar um pipeline que reúna dados de dispositivos da Internet das Coisas (IOT, na sigla em inglês) que enviam eventos de telemetria.
Benefícios
A transformação de aprimoramento oferece os seguintes benefícios:
Transforma seus dados sem exigir que você escreva códigos complexos ou gerencie bibliotecas subjacentes.
Fornece gerenciadores de origem integrados.
Use o gerenciador BigTableEnrichmentHandler para enriquecer seus dados usando uma fonte do Bigtable sem passar detalhes de configuração.
Use o gerenciador
BigQueryEnrichmentHandler
para enriquecer seus dados usando uma
fonte do BigQuery sem transmitir detalhes de configuração.
Usa a limitação do lado do cliente para gerenciar a limitação de taxa das solicitações. As solicitações são desativadas exponencialmente com uma estratégia de repetição padrão. É possível configurar a limitação de taxa de acordo com seu caso de uso.
Suporte e limitações
A transformação de aprimoramento tem os seguintes requisitos:
Disponível para pipelines de lote e streaming.
O gerenciador BigTableEnrichmentHandler está disponível nas versões 2.54.0 e posteriores do SDK do Apache Beam para Python.
O gerenciador BigQueryEnrichmentHandler está disponível nas versões 2.57.0 e posteriores do SDK do Apache Beam para Python.
O gerenciador VertexAIFeatureStoreEnrichmentHandler está disponível nas versões 2.55.0 e posteriores do SDK do Apache Beam para Python.
Ao usar a versão 2.55.0 e posteriores do SDK do Apache Beam para Python, também é necessário instalar o cliente Python para Redis.
Para usar a transformação de aprimoramento, inclua o seguinte código no pipeline:
importapache_beamasbeamfromapache_beam.transforms.enrichmentimportEnrichmentfromapache_beam.transforms.enrichment_handlers.bigtableimportBigTableEnrichmentHandlerbigtable_handler=BigTableEnrichmentHandler(...)withbeam.Pipeline()asp:output=(p...|"Create" >> beam.Create(data)|"Enrich with Bigtable" >> Enrichment(bigtable_handler)...)
Como a transformação de aprimoramento executa uma correlação por padrão, projete a junção personalizada para aprimorar os dados de entrada. Com isso, a junção incluirá apenas os campos especificados.
No exemplo abaixo, left é o elemento de entrada da transformação de aprimoramento, e right corresponde aos dados buscados em um serviço externo para esse elemento de entrada.
Para usar a transformação de aprimoramento, o parâmetro EnrichmentHandler é obrigatório.
Também é possível usar um parâmetro de configuração para especificar uma função lambda para uma função de junção, um tempo limite, um limitador ou um repetidor (estratégia de nova tentativa). Os seguintes
parâmetros de configuração estão disponíveis:
join_fn: uma função lambda que usa dicionários como entrada e retorna uma linha aprimorada (Callable[[Dict[str, Any], Dict[str, Any]], beam.Row]). A linha aprimorada especifica como mesclar os dados encontrados pela API.
O padrão é uma correlação.
timeout: quantos segundos se passaram até a solicitação ser concluída pela
API antes de expirar. O padrão é de 30 segundos.
throttler: especifica o mecanismo de limitação. A única opção aceita é
a limitação adaptável padrão do lado do cliente.
repeater: especifica a estratégia de repetição quando erros como TooManyRequests
e TimeoutException ocorrem. O padrão é ExponentialBackOffRepeater.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-02 UTC."],[[["\u003cp\u003eApache Beam's enrichment transform simplifies data enrichment workflows by allowing users to augment raw data with related data from various sources like Bigtable or BigQuery.\u003c/p\u003e\n"],["\u003cp\u003eThe enrichment transform offers benefits such as transforming data without writing complex code, providing built-in source handlers for Bigtable, BigQuery, and Vertex AI Feature Store, and using client-side throttling for rate limiting.\u003c/p\u003e\n"],["\u003cp\u003eTo utilize the enrichment transform, users need to include specific code in their pipeline using \u003ccode\u003eBigTableEnrichmentHandler\u003c/code\u003e, and ensure they have the correct Apache Beam Python SDK versions, among other requirements.\u003c/p\u003e\n"],["\u003cp\u003eThe transform enables data enrichment for use cases such as creating ecommerce pipelines with customized recommendations, joining user data with geographical data for analytics, or gathering data from IoT devices.\u003c/p\u003e\n"],["\u003cp\u003eThe transform defaults to cross join but can be configured using a join function, timeout, throttler or repeater for greater control over how the data is enriched.\u003c/p\u003e\n"]]],[],null,["# Enrich streaming data\n\nApache Beam simplifies the data enrichment workflow by providing a turnkey\nenrichment transform that you can add to your pipeline. This page explains how\nto use the Apache Beam enrichment transform to enrich your streaming data.\n\nWhen you enrich data, you augment the raw data from one source by adding related\ndata from a second source. The additional data can come from a variety of\nsources, such as [Bigtable](/bigtable/docs/overview) or\n[BigQuery](/bigquery/docs/introduction). The Apache Beam enrichment\ntransform uses a key-value lookup to connect the additional data to the raw data.\n\nThe following examples provide some cases where data enrichment is useful:\n\n- You want to create an ecommerce pipeline that captures user activities from a website or app and provides customized recommendations. The transform incorporates the activities into your pipeline data so that you can provide the customized recommendations.\n- You have user data that you want to join with geographical data to do geography-based analytics.\n- You want to create a pipeline that gathers data from internet-of-things (IOT) devices that send out telemetry events.\n\nBenefits\n--------\n\nThe enrichment transform has the following benefits:\n\n- Transforms your data without requiring you to write complex code or manage underlying libraries.\n- Provides built-in source handlers.\n - Use the [`BigTableEnrichmentHandler`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.bigtable.html#apache_beam.transforms.enrichment_handlers.bigtable.BigTableEnrichmentHandler) handler to enrich your data by using a Bigtable source without passing configuration details.\n - Use the [`BigQueryEnrichmentHandler`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.bigquery.html#apache_beam.transforms.enrichment_handlers.bigquery.BigQueryEnrichmentHandler) handler to enrich your data by using a BigQuery source without passing configuration details.\n - Use the [`VertexAIFeatureStoreEnrichmentHandler`](https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.enrichment_handlers.vertex_ai_feature_store.html#apache_beam.transforms.enrichment_handlers.vertex_ai_feature_store.VertexAIFeatureStoreEnrichmentHandler) handler with [Vertex AI Feature Store](/vertex-ai/docs/featurestore/latest/overview) and [Bigtable online serving](/vertex-ai/docs/featurestore/latest/overview#online_serving).\n- Uses client-side throttling to manage rate limiting the requests. The requests are exponentially backed off with a default retry strategy. You can configure rate limiting to suit your use case.\n\nSupport and limitations\n-----------------------\n\nThe enrichment transform has the following requirements:\n\n- Available for batch and streaming pipelines.\n- The `BigTableEnrichmentHandler` handler is available in the Apache Beam Python SDK versions 2.54.0 and later.\n- The `BigQueryEnrichmentHandler` handler is available in the Apache Beam Python SDK versions 2.57.0 and later.\n- The `VertexAIFeatureStoreEnrichmentHandler` handler is available in the Apache Beam Python SDK versions 2.55.0 and later.\n- When using the Apache Beam Python SDK versions 2.55.0 and later, you also need to install the [Python client for Redis](https://pypi.org/project/redis/).\n- Dataflow jobs must use [Runner v2](/dataflow/docs/runner-v2).\n\nUse the enrichment transform\n----------------------------\n\nTo use the enrichment transform, include the following code in\nyour pipeline: \n\n import apache_beam as beam\n from apache_beam.transforms.enrichment import Enrichment\n from apache_beam.transforms.enrichment_handlers.bigtable import BigTableEnrichmentHandler\n\n bigtable_handler = BigTableEnrichmentHandler(...)\n\n with beam.Pipeline() as p:\n output = (p\n ...\n | \"Create\" \u003e\u003e beam.Create(data)\n | \"Enrich with Bigtable\" \u003e\u003e Enrichment(bigtable_handler)\n ...\n )\n\nBecause the enrichment transform performs a cross join by default, design the\ncustom join to enrich the input data. This design ensures that the join includes\nonly the specified fields.\n\nIn the following example, `left` is the input element of the enrichment\ntransform, and `right` is data fetched from an external service for that input\nelement. \n\n def custom_join(left: Dict[str, Any], right: Dict[str, Any]):\n enriched = {}\n enriched['\u003cvar translate=\"no\"\u003eFIELD_NAME\u003c/var\u003e'] = left['\u003cvar translate=\"no\"\u003eFIELD_NAME\u003c/var\u003e']\n ...\n return beam.Row(**enriched)\n\n### Parameters\n\nTo use the enrichment transform, the `EnrichmentHandler` parameter is required.\n\nYou can also use a configuration parameter to specify a `lambda` function for a join\nfunction, a timeout, a throttler, or a repeater (retry strategy). The following\nconfiguration parameters are available:\n\n- `join_fn`: A `lambda` function that takes dictionaries as input and returns an enriched row (`Callable[[Dict[str, Any], Dict[str, Any]], beam.Row]`). The enriched row specifies how to join the data fetched from the API. Defaults to a cross join.\n- `timeout`: The number of seconds to wait for the request to be completed by the API before timing out. Defaults to 30 seconds.\n- `throttler`: Specifies the throttling mechanism. The only supported option is default client-side adaptive throttling.\n- `repeater`: Specifies the retry strategy when errors like `TooManyRequests` and `TimeoutException` occur. Defaults to `ExponentialBackOffRepeater`.\n\nWhat's next\n-----------\n\n- For more examples, see [Enrichment transform](https://beam.apache.org/documentation/transforms/python/elementwise/enrichment) in the Apache Beam transform catalog.\n- [Use Apache Beam and Bigtable to enrich data](/dataflow/docs/notebooks/bigtable_enrichment_transform).\n- [Use Apache Beam and BigQuery to enrich data](/dataflow/docs/notebooks/bigquery_enrichment_transform).\n- [Use Apache Beam and Vertex AI Feature Store to enrich data](/dataflow/docs/notebooks/vertex_ai_feature_store_enrichment)."]]