Register and call remote AI models using model endpoint management

This page describes how to invoke predictions or generate embeddings using a model, by registering the model endpoint with model endpoint management.

Before you begin

Before you register a model endpoint with model endpoint management, you must enable the google_ml_integration extension and set up authentication based on the model provider, if your model endpoint requires authentication.

Make sure to access your database with the postgres default username.

Enable the extension

You must add and enable the google_ml_integration extension before you can start using the associated functions. Model endpoint management requires that the google_ml_integration extension is installed.

  1. Verify that the google_ml_integration.enable_model_support database flag is set to on for an instance. For more information about setting database flags, see Configure an instance's database flags.

  2. Connect to your database using psql or AlloyDB for PostgreSQL Studio.

  3. Add the google_ml_integration extension using psql:

      CREATE EXTENSION IF NOT EXISTS google_ml_integration;
    
  4. Optional: If the google_ml_integration extension is already installed, alter it to update to the latest version:

        ALTER EXTENSION google_ml_integration UPDATE;
    
  5. Optional: Request access to interact with AlloyDB for PostgreSQL AI query engine (Preview) features including support for multimodal model, ranking models, and operator functions.

  6. Optional: Grant permission to a non-super PostgreSQL user to manage model metadata:

      GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA google_ml TO NON_SUPER_USER;
    

    Replace NON_SUPER_USER with the non-super PostgreSQL username.

  7. Ensure that outbound IP is enabled to access models hosted outside of your VPC, such as third-party models. For more information, see Add outbound connectivity.

Set up authentication

The following sections show how to set up authentication before registering a model endpoint.

Set up authentication for Vertex AI

To use the Google Vertex AI model endpoints, you must add Vertex AI permissions to the IAM-based AlloyDB service account you use to connect to the database. For more information about integrating with Vertex AI, see Integrate with Vertex AI.

Set up authentication using Secret Manager

This section explains how to set up authentication if you are using Secret Manager to store authentication details for third party providers.

This step is optional if your model endpoint doesn't handle authentication through Secret Manager—for example, if your model endpoint uses HTTP headers to pass authentication information or doesn't use authentication at all.

To create and use an API key or a bearer token, complete the following steps:

  1. Create the secret in Secret Manager. For more information, see Create a secret and access a secret version.

    The secret path is used in the google_ml.create_sm_secret() SQL function.

  2. Grant permissions to the AlloyDB cluster to access the secret.

      gcloud secrets add-iam-policy-binding 'SECRET_NAME' \
          --member="serviceAccount:SERVICE_ACCOUNT_ID" \
          --role="roles/secretmanager.secretAccessor"
    

    Replace the following:

    • SECRET_NAME: the secret name in Secret Manager.
    • SERVICE_ACCOUNT_ID: the ID of the IAM-based service account in the serviceAccount:service-PROJECT_ID@gcp-sa-alloydb.iam.gserviceaccount.com format—for example, service-212340152456@gcp-sa-alloydb.iam.gserviceaccount.com.

      You can also grant this role to the service account at the project level. For more information, see Add Identity and Access Management policy binding

Set up authentication using headers

The following example shows how to set up authentication using a function. The function returns a JSON object that contains the headers required to make a request to the embedding model.

  CREATE OR REPLACE FUNCTION HEADER_GEN_FUNCTION(
    model_id VARCHAR(100),
    input_text TEXT
  )
  RETURNS JSON
  LANGUAGE plpgsql
  AS $$
  #variable_conflict use_variable
  DECLARE
    api_key VARCHAR(255) := 'API_KEY';
    header_json JSON;
  BEGIN
    header_json := json_build_object(
      'Content-Type', 'application/json',
      'Authorization', 'Bearer ' || api_key
    );
    RETURN header_json;
  END;
  $$;

Replace the following:

  • HEADER_GEN_FUNCTION: the name of the header generation function that you can use when registering a model.
  • API_KEY: the API key of the model provider.

Text embedding models

This section shows how to register model endpoints with model endpoint management.

The model endpoint management supports some text embedding and generic Vertex AI models as pre-registered model endpoints. You can directly use the model ID to generate embeddings or invoke predictions, based on the model type. For more information about supported pre-registered models, see Pre-registered Vertex AI models.

The text-embedding-large-exp-03-07 model is only available in the us-central1 region.

For example, to call the pre-registered text-embedding-large-exp-03-07 model, you can directly call the model using the embedding function:

SELECT
      embedding(
        model_id => 'text-embedding-large-exp-03-07',
        content => 'AlloyDB is a managed, cloud-hosted SQL database service');

If your AlloyDB cluster and the Vertex AI endpoint are in different projects, then set the model_id to the qualified path of the endpoint—for example, projects/PROJECT_ID/locations/REGION_ID/publishers/google/models/text-embedding-large-exp-03-07.

Similarly, to call the pre-registered gemini-1.5-pro:generateContent model, you can directly call the model using the prediction function:

 SELECT google_ml.predict_row(
            model_id => 'gemini-1.5-pro:generateContent',
            request_body => '{
        "contents": [
            {
                "role": "user",
                "parts": [
                    {
                        "text": "For TPCH database schema as mentioned here https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf , generate a SQL query to find all supplier names which are located in the India nation. Only provide SQL query with no explanation."
                    }
                ]
            }
        ]
        }')-> 'candidates' -> 0 -> 'content' -> 'parts' -> 0 -> 'text';

To generate embeddings, see how to generate text embedding. To invoke predictions, see how to invoke predictions.

Text embedding models with built-in support

The model endpoint management provides built-in support for some models by Vertex AI and OpenAI. For the list of models with built-in support, see Models with built-in support.

For models with built-in support, you can set the qualified name as the model qualified name and specify the request URL. Model endpoint management automatically identifies the model and sets up default transform functions.

Vertex AI embedding models

The following steps show how to register Vertex AI models with built-in support. The text-embedding-005 and the text-multilingual-embedding-002 model endpoint is used as an example.

Ensure that both the AlloyDB cluster and the Vertex AI model you are querying are in the same region.

  1. Connect to your database using psql.

  2. Create and enable the google_ml_integration extension.

  3. Call the create model function to add the model endpoint:

    text-embedding-005

      CALL
        google_ml.create_model(
          model_id => 'text-embedding-005',
          model_request_url => 'publishers/google/models/text-embedding-005',
          model_provider => 'google',
          model_qualified_name => 'text-embedding-005',
          model_type => 'text_embedding',
          model_auth_type => 'alloydb_service_agent_iam');
    

    text-multilingual-embedding-002

      CALL
        google_ml.create_model(
          model_id => 'text-multilingual-embedding-002',
          model_request_url => 'publishers/google/models/text-multilingual-embedding-002',
          model_provider => 'google',
          model_qualified_name => 'text-multilingual-embedding-002',
          model_type => 'text_embedding',
          model_auth_type => 'alloydb_service_agent_iam'
          model_in_transform_fn => 'google_ml.vertexai_text_embedding_input_transform',
          model_out_transform_fn => 'google_ml.vertexai_text_embedding_output_transform');
    

If the model is stored in the another project and region than your AlloyDB cluster, then set the request URL to projects/PROJECT_ID/locations/REGION_ID/publishers/google/models/MODEL_ID, where REGION_ID is the region where your model is hosted, and the MODEL_ID is the qualified model name.

In addition, grant the Vertex AI User (roles/aiplatform.user) role to AlloyDB service account of the project where AlloyDB instance resides so that AlloyDB can access the model hosted in the other project.

Open AI text embedding model

The google_ml_integration extension automatically sets up default transform functions and invokes calls to the remote OpenAI models. For the list of OpenAI models with built-in support, see Models with built-in support.

The following example adds the text-embedding-ada-002 OpenAI model endpoint. You can register the OpenAI text-embedding-3-small and text-embedding-3-large model endpoints using the same steps and setting the model qualified names specific to the models.

  1. Connect to your database using psql.
  2. Create and enable the google_ml_integration extension.
  3. Add the OpenAI API key as a secret to the Secret Manager for authentication.
  4. Call the secret stored in the Secret Manager:

    CALL
    google_ml.create_sm_secret(
      secret_id => 'SECRET_ID',
      secret_path => 'projects/PROJECT_ID/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
    

    Replace the following:

    • SECRET_ID: the secret ID that you set and is subsequently used when registering a model endpoint—for example, key1.
    • SECRET_MANAGER_SECRET_ID: the secret ID set in Secret Manager when you created the secret.
    • PROJECT_ID: the ID of your Google Cloud project.
    • VERSION_NUMBER: the version number of the secret ID.
  5. Call the create model function to register the text-embedding-ada-002 model endpoint:

    CALL
      google_ml.create_model(
        model_id => 'MODEL_ID',
        model_provider => 'open_ai',
        model_type => 'text_embedding',
        model_qualified_name => 'text-embedding-ada-002',
        model_auth_type => 'secret_manager',
        model_auth_id => 'SECRET_ID');
    

    Replace the following:

    • MODEL_ID: a unique ID for the model endpoint that you define. This model ID is referenced for metadata that the model endpoint needs to generate embeddings or invoke predictions.
    • SECRET_ID: the secret ID you used earlier in the google_ml.create_sm_secret() procedure.

To generate embeddings, see generate text embeddings.

Custom-hosted text embedding model

This section shows how to register a custom-hosted model endpoint along with creating transform functions, and optionally, custom HTTP headers. All custom-hosted model endpoints are supported regardless of where they are hosted.

The following example adds the custom-embedding-model custom model endpoint hosted by Cymbal. The cymbal_text_input_transform and cymbal_text_output_transform transform functions are used to transform the input and output format of the model to the input and output format of the prediction function.

To register custom-hosted text embedding model endpoints, complete the following steps:

  1. Connect to your database using psql.

  2. Create and enable the google_ml_integration extension.

  3. Optional: Add the API key as a secret to the Secret Manager for authentication.

  4. Call the secret stored in the Secret Manager:

    CALL
      google_ml.create_sm_secret(
        secret_id => 'SECRET_ID',
        secret_path => 'projects/project-id/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
    

    Replace the following:

    • SECRET_ID: the secret ID that you set and is subsequently used when registering a model endpoint—for example, key1.
    • SECRET_MANAGER_SECRET_ID: the secret ID set in Secret Manager when you created the secret.
    • PROJECT_ID: the ID of your Google Cloud project.
    • VERSION_NUMBER: the version number of the secret ID.
  5. Create the input and output transform functions based on the following signature for the prediction function for text embedding model endpoints. For more information about how to create transform functions, see Transform functions example.

    The following are example transform functions that are specific to the custom-embedding-model text embedding model endpoint:

    -- Input Transform Function corresponding to the custom model endpoint
    CREATE OR REPLACE FUNCTION cymbal_text_input_transform(model_id VARCHAR(100), input_text TEXT)
    RETURNS JSON
    LANGUAGE plpgsql
    AS $$
    DECLARE
      transformed_input JSON;
      model_qualified_name TEXT;
    BEGIN
      SELECT json_build_object('prompt', json_build_array(input_text))::JSON INTO transformed_input;
      RETURN transformed_input;
    END;
    $$;
    -- Output Transform Function corresponding to the custom model endpoint
    CREATE OR REPLACE FUNCTION cymbal_text_output_transform(model_id VARCHAR(100), response_json JSON)
    RETURNS REAL[]
    LANGUAGE plpgsql
    AS $$
    DECLARE
      transformed_output REAL[];
    BEGIN
      SELECT ARRAY(SELECT json_array_elements_text(response_json->0)) INTO transformed_output;
      RETURN transformed_output;
    END;
    $$;
    
  6. Call the create model function to register the custom embedding model endpoint:

    CALL
      google_ml.create_model(
        model_id => 'MODEL_ID',
        model_request_url => 'REQUEST_URL',
        model_provider => 'custom',
        model_type => 'text_embedding',
        model_auth_type => 'secret_manager',
        model_auth_id => 'SECRET_ID',
        model_qualified_name => 'MODEL_QUALIFIED_NAME',
        model_in_transform_fn => 'cymbal_text_input_transform',
        model_out_transform_fn => 'cymbal_text_output_transform');
    

    Replace the following:

    • MODEL_ID: required. A unique ID for the model endpoint that you define-for example custom-embedding-model. This model ID is referenced for metadata that the model endpoint needs to generate embeddings or invoke predictions.
    • REQUEST_URL: required. The model-specific endpoint when adding custom text embedding and generic model endpoints—for example, https://cymbal.com/models/text/embeddings/v1. Ensure that the model endpoint is accessible through an internal IP address. Model endpoint management doesn't support public IP addresses.
    • MODEL_QUALIFIED_NAME: required if your model endpoint uses a qualified name. The fully qualified name in case the model endpoint has multiple versions.
    • SECRET_ID: the secret ID you used earlier in the google_ml.create_sm_secret() procedure.

Multimodal model with built-in support

Integrate with Vertex AI and install the extension

  1. Integrate with Vertex AI.
  2. Ensure that the latest version of google_ml_integration is installed.
    1. To check the installed version, run the following command:

              SELECT extversion FROM pg_extension WHERE extname = 'google_ml_integration';
              extversion 
              ------------
              1.4.3
              (1 row)
            
    2. If the extension isn't installed or if the installed version is earlier than 1.4.3, update the extension by running the following commands:

              CREATE EXTENSION IF NOT EXISTS google_ml_integration;
      
              ALTER EXTENSION google_ml_integration UPDATE;
            

      If you experience issues when you run the preceding commands, or if the extension isn't updated to version 1.4.3 after you run the preceding commands, contact AlloyDB support.

    3. After you ensure that the version is current, install the preview functionality by running the upgrade_to_preview_version procedure:

              CALL google_ml.upgrade_to_preview_version();
      
              SELECT extversion FROM pg_extension WHERE extname = 'google_ml_integration';
              extversion 
              ------------
              1.4.4
              (1 row)
            

Call the model to generate multimodal embeddings

Since Model endpoint management provides built-in support for the multimodalembedding@001 model by Vertex AI, you can directly call the model to generate multimodal embeddings.

The following example uses the multimodalembedding@001 qualified model name as model ID to generate multimodal image embeddings:

  1. Connect to your database using psql.
  2. Create and enable the google_ml_integration extension.
  3. Generate multimodal image embeddings:

    SELECT
      ai.image_embedding(
        model_id => 'multimodalembedding@001',
        image => 'IMAGE_PATH_OR_TEXT',
        mimetype => 'MIMETYPE');
    

Replace the following:

  • IMAGE_PATH_OR_TEXT with Cloud Storage path to the image, for example-gs://cymbal_user_data/image-85097193-cd9788aacebb.jpeg to translate into a vector embedding or base64 string of the image.
  • MIMETYPE with the mimetype of the image.

Ranking models

Vertex AI ranking models

You can use Vertex AI models mentioned in Supported models without registration.

To learn how to rank your search results using a Vertex AI ranking model, see Rank search results.

Registering a third-party ranking model

The following example shows how to register a reranking model from Cohere.

CREATE OR REPLACE FUNCTION cohere_rerank_input_transform(
    model_id VARCHAR(100),
    search_string TEXT,
    documents TEXT[],
    top_n INT DEFAULT NULL
)
RETURNS JSON
LANGUAGE plpgsql
AS $$
#variable_conflict use_variable
DECLARE
  transformed_input JSONB;
BEGIN
  -- Basic Input Validation
  IF search_string IS NULL OR search_string = '' THEN
    RAISE EXCEPTION 'Invalid input: search_string cannot be NULL or empty.';
  END IF;

  IF documents IS NULL OR array_length(documents, 1) IS NULL OR array_length(documents, 1) = 0 THEN
    RAISE EXCEPTION 'Invalid input: documents array cannot be NULL or empty.';
  END IF;

  IF top_n IS NOT NULL AND top_n < 0 THEN
    RAISE EXCEPTION 'Invalid input: top_n must be greater than or equal to zero. Provided value: %', top_n;
  END IF;

  -- Construct the base JSON payload for Cohere Rerank API
  transformed_input := jsonb_build_object(
    'model', google_ml.model_qualified_name_of(model_id),
    'query', search_string,
    'documents', to_jsonb(documents), -- Convert TEXT[] directly to JSON array
    'return_documents', false -- Explicitly set to false (optional, as its default)
  );

  -- Add top_n to the payload only if it's provided and valid
  IF top_n IS NOT NULL THEN
     transformed_input := transformed_input || jsonb_build_object('top_n', top_n);
  END IF;

  -- Return the final JSON payload
  RETURN transformed_input::JSON;

END;
$$;

CREATE OR REPLACE FUNCTION cohere_rerank_output_transform(
    model_id VARCHAR(100),
    response_json JSON
)
RETURNS TABLE (index INT, score REAL)
LANGUAGE plpgsql
AS $$
DECLARE
  result_item JSONB;
  response_jsonb JSONB;
  cohere_index INT; -- 0-based index from Cohere response
BEGIN
  -- Validate response_json
  IF response_json IS NULL THEN
    RAISE EXCEPTION 'Invalid model response: response cannot be NULL.';
  END IF;

  -- Convert JSON to JSONB for easier processing
  response_jsonb := response_json::JSONB;

  -- Check top-level structure
  IF jsonb_typeof(response_jsonb) != 'object' THEN
    RAISE EXCEPTION 'Invalid model response: response must be a JSON object. Found: %', jsonb_typeof(response_jsonb);
  END IF;

  -- Check for the 'results' array
  IF response_jsonb->'results' IS NULL OR jsonb_typeof(response_jsonb->'results') != 'array' THEN
    -- Check for potential Cohere error structure
    IF response_jsonb->'message' IS NOT NULL THEN
       RAISE EXCEPTION 'Cohere API Error: %', response_jsonb->>'message';
    ELSE
       RAISE EXCEPTION 'Invalid model response: response does not contain a valid "results" array.';
    END IF;
  END IF;

  -- Loop through the 'results' array (JSONB array indices are 0-based)
  FOR i IN 0..jsonb_array_length(response_jsonb->'results') - 1 LOOP
    result_item := response_jsonb->'results'->i;

    -- Validate individual result item structure
    IF result_item IS NULL OR jsonb_typeof(result_item) != 'object' THEN
      RAISE WARNING 'Skipping invalid result item at array index %.', i;
      CONTINUE;
    END IF;

    IF result_item->'index' IS NULL OR jsonb_typeof(result_item->'index') != 'number' THEN
       RAISE WARNING 'Missing or invalid "index" field in result item at array index %.', i;
       CONTINUE;
    END IF;

    IF result_item->'relevance_score' IS NULL OR jsonb_typeof(result_item->'relevance_score') != 'number' THEN
       RAISE WARNING 'Missing or invalid "relevance_score" field in result item at array index %.', i;
       CONTINUE;
    END IF;

    -- Extract values
    BEGIN
      cohere_index := (result_item->>'index')::INT;
      -- Assign values to the output table columns
      -- Cohere returns 0-based index, map it to 1-based for consistency
      -- with input document array position
      index := cohere_index + 1;
      score := (result_item->>'relevance_score')::REAL;
      RETURN NEXT; -- Return the current row
    EXCEPTION WHEN others THEN
      RAISE WARNING 'Error processing result item at array index %: %', i, SQLERRM;
      CONTINUE; -- Skip this item and continue with the next
    END;
  END LOOP;

  RETURN; -- End of function
END;
$$;

CALL
  google_ml.create_sm_secret(
    '<SECRET_ID>',
    'projects/<PROJECT_NUMBER>/secrets/<SECRET_ID>/versions/latest');

CALL
  google_ml.create_model(
    model_id => 'cohere-reranker',
    model_type => 'reranking',
    model_provider => 'custom',
    model_request_url => 'https://api.cohere.com/v2/rerank',
    model_qualified_name => 'rerank-v3.5',
    model_auth_type => 'secret_manager',
    model_auth_id => '<SECRET_ID>',
    model_in_transform_fn => 'cohere_rerank_input_transform',
    model_out_transform_fn => 'cohere_rerank_output_transform'
  );

Generic models

This section shows how to register any generic model endpoint that is available on a hosted model provider such as Hugging Face, OpenAI, Vertex AI, Anthropic, or any other provider. This section shows examples to register a generic model endpoint hosted on Hugging Face, a generic gemini-pro model from Vertex AI Model Garden, and the claude-haiku model endpoint.

You can register any generic model endpoint as long as the input and output is in the JSON format. Based on your model endpoint metadata, you might need to generate HTTP headers or define request URLs.

For more information about pre-registered generic models and models with built-in support, see Supported models.

Generic Gemini models

This section shows how to register generic Gemini models.

gemini-1.5-pro model

Since some gemini-pro models are pre-registered, you can directly call the model ID to invoke predictions.

The following example uses the gemini-1.5-pro:generateContent model endpoint from the Vertex AI Model Garden.

  1. Connect to your database using psql.
  2. Create and enable the google_ml_integration extension.
  3. Invoke predictions using the pre-registered model ID:

    SELECT
        json_array_elements(
        google_ml.predict_row(
            model_id => 'gemini-1.5-pro:generateContent',
            request_body => '{
        "contents": [
            {
                "role": "user",
                "parts": [
                    {
                        "text": "For TPCH database schema as mentioned here https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v3.0.1.pdf , generate a SQL query to find all supplier names which are located in the India nation."
                    }
                ]
            }
        ]
        }'))-> 'candidates' -> 0 -> 'content' -> 'parts' -> 0 -> 'text';
    

Generic model on Hugging Face

The following example adds the facebook/bart-large-mnli custom classification model endpoint hosted on Hugging Face.

  1. Connect to your database using psql.
  2. Create and enable the google_ml_integration extension.
  3. Add the OpenAI API key as a secret to the Secret Manager for authentication. If you have already created a secret for any other OpenAI model, you can reuse the same secret.
  4. Call the secret stored in the Secret Manager:

    CALL
      google_ml.create_sm_secret(
        secret_id => 'SECRET_ID',
        secret_path => 'projects/project-id/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
    

    Replace the following:

    • SECRET_ID: the secret ID that you set and is subsequently used when registering a model endpoint.
    • SECRET_MANAGER_SECRET_ID: the secret ID set in Secret Manager when you created the secret.
    • PROJECT_ID: the ID of your Google Cloud project.
    • VERSION_NUMBER: the version number of the secret ID.
  5. Call the create model function to register the facebook/bart-large-mnli model endpoint:

    CALL
      google_ml.create_model(
        model_id => 'MODEL_ID',
        model_provider => 'hugging_face',
        model_request_url => 'REQUEST_URL',
        model_qualified_name => 'MODEL_QUALIFIED_NAME',
        model_auth_type => 'secret_manager',
        model_auth_id => 'SECRET_ID');
    

    Replace the following:

    • MODEL_ID: a unique ID for the model endpoint that you define—for example, custom-classification-model. This model ID is referenced for metadata that the model endpoint needs to generate embeddings or invoke predictions.
    • REQUEST_URL: the model-specific endpoint when adding custom text embedding and generic model endpoints—for example, https://api-inference.huggingface.co/models/facebook/bart-large-mnli.
    • MODEL_QUALIFIED_NAME: the fully qualified name of the model endpoint version-for example, facebook/bart-large-mnli.
    • SECRET_ID: the secret ID you used earlier in the google_ml.create_sm_secret() procedure.

Anthropic generic model

The following example adds the claude-3-opus-20240229 model endpoint. Model endpoint management provides the header function required for registering Anthropic models.

  1. Connect to your database using psql.
  2. Create and enable the google_ml_integration extension.

    Secret Manager

    1. Add the bearer token as a secret to the Secret Manager for authentication.
    2. Call the secret stored in the Secret Manager:

      CALL
        google_ml.create_sm_secret(
          secret_id => 'SECRET_ID',
          secret_path => 'projects/PROJECT_ID/secrets/SECRET_MANAGER_SECRET_ID/versions/VERSION_NUMBER');
      

      Replace the following:

      • SECRET_ID: the secret ID that you set and is subsequently used when registering a model endpoint.
      • SECRET_MANAGER_SECRET_ID: the secret ID set in Secret Manager when you created the secret.
      • PROJECT_ID: the ID of your Google Cloud project.
      • VERSION_NUMBER: the version number of the secret ID.
    3. Call the create model function to register the claude-3-opus-20240229 model endpoint.

      CALL
        google_ml.create_model(
          model_id => 'MODEL_ID',
          model_provider => 'anthropic',
          model_request_url => 'REQUEST_URL',
          model_auth_type => 'secret_manager',
          model_auth_id => 'SECRET_ID',
          generate_headers_fn => 'google_ml.anthropic_claude_header_gen_fn');
      

      Replace the following:

      • MODEL_ID: a unique ID for the model endpoint that you define—for example, anthropic-opus. This model ID is referenced for metadata that the model endpoint needs to generate embeddings or invoke predictions.
      • REQUEST_URL: the model-specific endpoint when adding custom text embedding and generic model endpoints—for example, https://api.anthropic.com/v1/messages.

    Auth header

    1. Use the google_ml.anthropic_claude_header_gen_fn default header generation function or create a header generation function.

        CREATE OR REPLACE FUNCTION anthropic_sample_header_gen_fn(model_id VARCHAR(100), request_body JSON)
        RETURNS JSON
        LANGUAGE plpgsql
        AS $$
        #variable_conflict use_variable
        BEGIN
              RETURN json_build_object('x-api-key', 'ANTHROPIC_API_KEY', 'anthropic-version', 'ANTHROPIC_VERSION')::JSON;
        END;
        $$;
      

      Replace the following:

      • ANTHROPIC_API_KEY: the anthropic API key.
      • ANTHROPIC_VERSION (Optional): the specific model version you want to use—for example, 2023-06-01.
    2. Call the create model function to register the claude-3-opus-20240229 model endpoint.

      CALL
        google_ml.create_model(
          model_id => 'MODEL_ID',
          model_provider => 'anthropic',
          model_request_url => 'REQUEST_URL',
          generate_headers_fn => 'google_ml.anthropic_claude_header_gen_fn');
      

      Replace the following:

      • MODEL_ID: a unique ID for the model endpoint that you define—for example, anthropic-opus. This model ID is referenced for metadata that the model endpoint needs to generate embeddings or invoke predictions.
      • REQUEST_URL: the model-specific endpoint when adding custom text embedding and generic model endpoints—for example, https://api.anthropic.com/v1/messages.

For more information, see how to invoke predictions for generic model endpoints.

What's next