Online-Dateiannotation für kleine Batches

Die Vision API kann eine (direkte) Online-Anmerkung für mehrere Seiten oder Frames aus PDF-, TIFF- oder GIF-Dateien bereitstellen, die in Cloud Storage gespeichert sind.

Sie können für jede Datei eine Online-Feature-Erkennung und eine Anmerkung mit 5 Frames (GIF; "image/gif") oder Seiten (PDF; "application/pdf" oder TIFF; "image/tiff") anfordern.

Die Beispielanmerkungen auf dieser Seite sind für DOCUMENT_TEXT_DETECTION. Die Online-Anmerkung für kleine Batches ist jedoch für alle Vision-Features verfügbar.

Erste fünf Seiten einer PDF-Datei
gs://cloud-samples-data/vision/document_understanding/custom_0773375000.pdf

Beschränkungen

Es können höchstens 5 Seiten mit Anmerkungen versehen werden. Nutzer können die 5 Seiten angeben, die mit Anmerkungen versehen werden sollen.

Authentifizierung

Google Cloud Projekt und Authentifizierung einrichten

Derzeit unterstützte Featuretypen

Featuretyp
CROP_HINTS Ermittelt Vorschläge für Eckpunkte für einen Bildausschnitt.
DOCUMENT_TEXT_DETECTION Führt in Bildern mit hohem Textanteil eine OCR durch, z. B. Dokumente (PDF/TIFF) und Bilder mit Handschrift. TEXT_DETECTION kann für Bilder mit wenig Text verwendet werden. Hat Vorrang, wenn DOCUMENT_TEXT_DETECTION und TEXT_DETECTION vorhanden sind.
FACE_DETECTION Erkennt Gesichter im Bild.
IMAGE_PROPERTIES Eine Reihe von Bildeigenschaften berechnen, z. B. die dominanten Farben des Bildes.
LABEL_DETECTION Fügt Labels ausgehend vom Bildinhalt hinzu.
LANDMARK_DETECTION Erkennt geografische Sehenswürdigkeiten im Bild.
LOGO_DETECTION Erkennt Firmenlogos im Bild.
OBJECT_LOCALIZATION Mehrere Objekte in einem Bild erkennen und extrahieren.
SAFE_SEARCH_DETECTION Führen Sie SafeSearch aus, um potenziell unsichere oder unerwünschte Inhalte zu erkennen.
TEXT_DETECTION Führen Sie die optische Zeichenerkennung (Optical Character Recognition, OCR) für Text im Bild durch. Die Texterkennung ist für Bereiche mit wenig Text innerhalb eines größeren Bildes optimiert. Verwenden Sie bitte DOCUMENT_TEXT_DETECTION, wenn das Bild ein Dokument ist (PDF/TIFF), viel Text oder Handschrift enthält.
WEB_DETECTION Mit der Google Bildersuche lassen sich thematische Entitäten wie Nachrichten, Veranstaltungen oder Prominente im Bild erkennen und nach ähnlichen Bildern im Web suchen.

Beispielcode

Sie können entweder eine Anmerkungsanfrage mit einer lokal gespeicherten Datei senden oder eine Datei verwenden, die in Cloud Storage gespeichert ist.

Lokal gespeicherte Datei verwenden

Verwenden Sie die folgenden Codebeispiele, um eine Feature-Anmerkung für eine lokal gespeicherte Datei abzurufen.

REST

Senden Sie eine POST-Anfrage und geben Sie den entsprechenden Anfragetext an, um eine Online-Erkennung für einen kleinen Batch von Dateien im PDF-/TIFF-/GIF-Format durchzuführen:

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • BASE64_ENCODED_FILE: Die Base64-Darstellung (ASCII-String) der Binärdateidaten. Dieser String sollte in etwa so aussehen:
    • JVBERi0xLjUNCiW1tbW1...ydHhyZWYNCjk5NzM2OQ0KJSVFT0Y=
    Weitere Informationen erhalten Sie unter Base64-Codierung.
  • PROJECT_ID: Ihre Google Cloud -Projekt-ID

Feldspezifische Hinweise:

  • inputConfig.mimeType – eine der folgenden Optionen: "application/pdf", "image/tiff" oder "image/gif".
  • pages  – gibt die spezifischen Seiten der Datei zur Durchführung der Feature-Erkennung an.

HTTP-Methode und URL:

POST https://vision.googleapis.com/v1/files:annotate

JSON-Text der Anfrage:

{
  "requests": [
    {
      "inputConfig": {
        "content": "BASE64_ENCODED_FILE",
        "mimeType": "application/pdf"
      },
      "features": [
        {
          "type": "DOCUMENT_TEXT_DETECTION"
        }
      ],
      "pages": [
        1,2,3,4,5
      ]
    }
  ]
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/files:annotate"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/files:annotate" | Select-Object -Expand Content
Antwort

Eine erfolgreiche annotate-Anfrage gibt sofort eine JSON-Antwort zurück.

Bei diesem Feature (DOCUMENT_TEXT_DETECTION) ähnelt die JSON-Antwort der einer Anfrage zur Dokumenttexterkennung eines Bildes. Die Antwort enthält Begrenzungsrahmen für Blöcke, die nach Absätzen, Wörtern und einzelnen Symbolen aufgeschlüsselt sind. Der vollständige Text wird ebenfalls erkannt. Die Antwort enthält außerdem ein context-Feld, das den Speicherort der angegebenen PDF- oder TIFF-Datei und die Seitenzahl des Ergebnisses in der Datei angibt.

Die angezeigte JSON-Antwort bezieht sich nur auf eine einzelne Seite (Seite 2) und wurde aus Gründen der Verständlichkeit gekürzt.

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie der Anleitung für die Einrichtung von Java in der Vision API-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Java-Referenzdokumentation zur Vision API.

import com.google.cloud.vision.v1.AnnotateFileRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateFilesRequest;
import com.google.cloud.vision.v1.BatchAnnotateFilesResponse;
import com.google.cloud.vision.v1.Block;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.InputConfig;
import com.google.cloud.vision.v1.Page;
import com.google.cloud.vision.v1.Paragraph;
import com.google.cloud.vision.v1.Symbol;
import com.google.cloud.vision.v1.Word;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class BatchAnnotateFiles {

  public static void batchAnnotateFiles() throws IOException {
    String filePath = "path/to/your/file.pdf";
    batchAnnotateFiles(filePath);
  }

  public static void batchAnnotateFiles(String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient imageAnnotatorClient = ImageAnnotatorClient.create()) {
      // You can send multiple files to be annotated, this sample demonstrates how to do this with
      // one file. If you want to use multiple files, you have to create a `AnnotateImageRequest`
      // object for each file that you want annotated.
      // First read the files contents
      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      ByteString content = ByteString.copyFrom(data);

      // Specify the input config with the file's contents and its type.
      // Supported mime_type: application/pdf, image/tiff, image/gif
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
      InputConfig inputConfig =
          InputConfig.newBuilder().setMimeType("application/pdf").setContent(content).build();

      // Set the type of annotation you want to perform on the file
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
      Feature feature = Feature.newBuilder().setType(Feature.Type.DOCUMENT_TEXT_DETECTION).build();

      // Build the request object for that one file. Note: for additional file you have to create
      // additional `AnnotateFileRequest` objects and store them in a list to be used below.
      // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
      // specify which pages to process. The service can process up to 5 pages per document file.
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
      AnnotateFileRequest fileRequest =
          AnnotateFileRequest.newBuilder()
              .setInputConfig(inputConfig)
              .addFeatures(feature)
              .addPages(1) // Process the first page
              .addPages(2) // Process the second page
              .addPages(-1) // Process the last page
              .build();

      // Add each `AnnotateFileRequest` object to the batch request.
      BatchAnnotateFilesRequest request =
          BatchAnnotateFilesRequest.newBuilder().addRequests(fileRequest).build();

      // Make the synchronous batch request.
      BatchAnnotateFilesResponse response = imageAnnotatorClient.batchAnnotateFiles(request);

      // Process the results, just get the first result, since only one file was sent in this
      // sample.
      for (AnnotateImageResponse imageResponse :
          response.getResponsesList().get(0).getResponsesList()) {
        System.out.format("Full text: %s%n", imageResponse.getFullTextAnnotation().getText());
        for (Page page : imageResponse.getFullTextAnnotation().getPagesList()) {
          for (Block block : page.getBlocksList()) {
            System.out.format("%nBlock confidence: %s%n", block.getConfidence());
            for (Paragraph par : block.getParagraphsList()) {
              System.out.format("\tParagraph confidence: %s%n", par.getConfidence());
              for (Word word : par.getWordsList()) {
                System.out.format("\t\tWord confidence: %s%n", word.getConfidence());
                for (Symbol symbol : word.getSymbolsList()) {
                  System.out.format(
                      "\t\t\tSymbol: %s, (confidence: %s)%n",
                      symbol.getText(), symbol.getConfidence());
                }
              }
            }
          }
        }
      }
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Node.js API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const fileName = 'path/to/your/file.pdf';

// Imports the Google Cloud client libraries
const {ImageAnnotatorClient} = require('@google-cloud/vision').v1;
const fs = require('fs').promises;

// Instantiates a client
const client = new ImageAnnotatorClient();

// You can send multiple files to be annotated, this sample demonstrates how to do this with
// one file. If you want to use multiple files, you have to create a request object for each file that you want annotated.
async function batchAnnotateFiles() {
  // First Specify the input config with the file's path and its type.
  // Supported mime_type: application/pdf, image/tiff, image/gif
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
  const inputConfig = {
    mimeType: 'application/pdf',
    content: await fs.readFile(fileName),
  };

  // Set the type of annotation you want to perform on the file
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
  const features = [{type: 'DOCUMENT_TEXT_DETECTION'}];

  // Build the request object for that one file. Note: for additional files you have to create
  // additional file request objects and store them in a list to be used below.
  // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
  // specify which pages to process. The service can process up to 5 pages per document file.
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
  const fileRequest = {
    inputConfig: inputConfig,
    features: features,
    // Annotate the first two pages and the last one (max 5 pages)
    // First page starts at 1, and not 0. Last page is -1.
    pages: [1, 2, -1],
  };

  // Add each `AnnotateFileRequest` object to the batch request.
  const request = {
    requests: [fileRequest],
  };

  // Make the synchronous batch request.
  const [result] = await client.batchAnnotateFiles(request);

  // Process the results, just get the first result, since only one file was sent in this
  // sample.
  const responses = result.responses[0].responses;

  for (const response of responses) {
    console.log(`Full text: ${response.fullTextAnnotation.text}`);
    for (const page of response.fullTextAnnotation.pages) {
      for (const block of page.blocks) {
        console.log(`Block confidence: ${block.confidence}`);
        for (const paragraph of block.paragraphs) {
          console.log(` Paragraph confidence: ${paragraph.confidence}`);
          for (const word of paragraph.words) {
            const symbol_texts = word.symbols.map(symbol => symbol.text);
            const word_text = symbol_texts.join('');
            console.log(
              `  Word text: ${word_text} (confidence: ${word.confidence})`
            );
            for (const symbol of word.symbols) {
              console.log(
                `   Symbol: ${symbol.text} (confidence: ${symbol.confidence})`
              );
            }
          }
        }
      }
    }
  }
}

batchAnnotateFiles();

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Python API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.



from google.cloud import vision_v1


def sample_batch_annotate_files(file_path="path/to/your/document.pdf"):
    """Perform batch file annotation."""
    client = vision_v1.ImageAnnotatorClient()

    # Supported mime_type: application/pdf, image/tiff, image/gif
    mime_type = "application/pdf"
    with open(file_path, "rb") as f:
        content = f.read()
    input_config = {"mime_type": mime_type, "content": content}
    features = [{"type_": vision_v1.Feature.Type.DOCUMENT_TEXT_DETECTION}]

    # The service can process up to 5 pages per document file. Here we specify
    # the first, second, and last page of the document to be processed.
    pages = [1, 2, -1]
    requests = [{"input_config": input_config, "features": features, "pages": pages}]

    response = client.batch_annotate_files(requests=requests)
    for image_response in response.responses[0].responses:
        print(f"Full text: {image_response.full_text_annotation.text}")
        for page in image_response.full_text_annotation.pages:
            for block in page.blocks:
                print(f"\nBlock confidence: {block.confidence}")
                for par in block.paragraphs:
                    print(f"\tParagraph confidence: {par.confidence}")
                    for word in par.words:
                        print(f"\t\tWord confidence: {word.confidence}")
                        for symbol in word.symbols:
                            print(
                                "\t\t\tSymbol: {}, (confidence: {})".format(
                                    symbol.text, symbol.confidence
                                )
                            )

Datei in Cloud Storage verwenden

Verwenden Sie die folgenden Codebeispiele, um eine Feature-Anmerkung für eine Datei in Cloud Storage abzurufen.

REST

Senden Sie eine POST-Anfrage und geben Sie den entsprechenden Anfragetext an, um eine Online-Erkennung für einen kleinen Batch von Dateien im PDF-/TIFF-/GIF-Format durchzuführen:

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • CLOUD_STORAGE_FILE_URI: der Pfad zu einer gültigen Datei (PDF/TIFF) in einem Cloud Storage-Bucket. Sie müssen zumindest Leseberechtigungen für die Datei haben. Beispiel:
    • gs://cloud-samples-data/vision/document_understanding/custom_0773375000.pdf
  • PROJECT_ID: Ihre Google Cloud -Projekt-ID

Feldspezifische Hinweise:

  • inputConfig.mimeType – eine der folgenden Optionen: "application/pdf", "image/tiff" oder "image/gif".
  • pages  – gibt die spezifischen Seiten der Datei zur Durchführung der Feature-Erkennung an.

HTTP-Methode und URL:

POST https://vision.googleapis.com/v1/files:annotate

JSON-Text der Anfrage:

{
  "requests": [
    {
      "inputConfig": {
        "gcsSource": {
          "uri": "CLOUD_STORAGE_FILE_URI"
        },
        "mimeType": "application/pdf"
      },
      "features": [
        {
          "type": "DOCUMENT_TEXT_DETECTION"
        }
      ],
      "pages": [
        1,2,3,4,5
      ]
    }
  ]
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/files:annotate"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/files:annotate" | Select-Object -Expand Content
Antwort

Eine erfolgreiche annotate-Anfrage gibt sofort eine JSON-Antwort zurück.

Bei diesem Feature (DOCUMENT_TEXT_DETECTION) ähnelt die JSON-Antwort der einer Anfrage zur Dokumenttexterkennung eines Bildes. Die Antwort enthält Begrenzungsrahmen für Blöcke, die nach Absätzen, Wörtern und einzelnen Symbolen aufgeschlüsselt sind. Der vollständige Text wird ebenfalls erkannt. Die Antwort enthält außerdem ein context-Feld, das den Speicherort der angegebenen PDF- oder TIFF-Datei und die Seitenzahl des Ergebnisses in der Datei angibt.

Die angezeigte JSON-Antwort bezieht sich nur auf eine einzelne Seite (Seite 2) und wurde aus Gründen der Verständlichkeit gekürzt.

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie der Anleitung für die Einrichtung von Java in der Vision API-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Java-Referenzdokumentation zur Vision API.

import com.google.cloud.vision.v1.AnnotateFileRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateFilesRequest;
import com.google.cloud.vision.v1.BatchAnnotateFilesResponse;
import com.google.cloud.vision.v1.Block;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.GcsSource;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.InputConfig;
import com.google.cloud.vision.v1.Page;
import com.google.cloud.vision.v1.Paragraph;
import com.google.cloud.vision.v1.Symbol;
import com.google.cloud.vision.v1.Word;
import java.io.IOException;

public class BatchAnnotateFilesGcs {

  public static void batchAnnotateFilesGcs() throws IOException {
    String gcsUri = "gs://cloud-samples-data/vision/document_understanding/kafka.pdf";
    batchAnnotateFilesGcs(gcsUri);
  }

  public static void batchAnnotateFilesGcs(String gcsUri) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient imageAnnotatorClient = ImageAnnotatorClient.create()) {
      // You can send multiple files to be annotated, this sample demonstrates how to do this with
      // one file. If you want to use multiple files, you have to create a `AnnotateImageRequest`
      // object for each file that you want annotated.
      // First specify where the vision api can find the image
      GcsSource gcsSource = GcsSource.newBuilder().setUri(gcsUri).build();

      // Specify the input config with the file's uri and its type.
      // Supported mime_type: application/pdf, image/tiff, image/gif
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
      InputConfig inputConfig =
          InputConfig.newBuilder().setMimeType("application/pdf").setGcsSource(gcsSource).build();

      // Set the type of annotation you want to perform on the file
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
      Feature feature = Feature.newBuilder().setType(Feature.Type.DOCUMENT_TEXT_DETECTION).build();

      // Build the request object for that one file. Note: for additional file you have to create
      // additional `AnnotateFileRequest` objects and store them in a list to be used below.
      // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
      // specify which pages to process. The service can process up to 5 pages per document file.
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
      AnnotateFileRequest fileRequest =
          AnnotateFileRequest.newBuilder()
              .setInputConfig(inputConfig)
              .addFeatures(feature)
              .addPages(1) // Process the first page
              .addPages(2) // Process the second page
              .addPages(-1) // Process the last page
              .build();

      // Add each `AnnotateFileRequest` object to the batch request.
      BatchAnnotateFilesRequest request =
          BatchAnnotateFilesRequest.newBuilder().addRequests(fileRequest).build();

      // Make the synchronous batch request.
      BatchAnnotateFilesResponse response = imageAnnotatorClient.batchAnnotateFiles(request);

      // Process the results, just get the first result, since only one file was sent in this
      // sample.
      for (AnnotateImageResponse imageResponse :
          response.getResponsesList().get(0).getResponsesList()) {
        System.out.format("Full text: %s%n", imageResponse.getFullTextAnnotation().getText());
        for (Page page : imageResponse.getFullTextAnnotation().getPagesList()) {
          for (Block block : page.getBlocksList()) {
            System.out.format("%nBlock confidence: %s%n", block.getConfidence());
            for (Paragraph par : block.getParagraphsList()) {
              System.out.format("\tParagraph confidence: %s%n", par.getConfidence());
              for (Word word : par.getWordsList()) {
                System.out.format("\t\tWord confidence: %s%n", word.getConfidence());
                for (Symbol symbol : word.getSymbolsList()) {
                  System.out.format(
                      "\t\t\tSymbol: %s, (confidence: %s)%n",
                      symbol.getText(), symbol.getConfidence());
                }
              }
            }
          }
        }
      }
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Node.js API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsSourceUri = 'gs://cloud-samples-data/vision/document_understanding/kafka.pdf';

// Imports the Google Cloud client libraries
const {ImageAnnotatorClient} = require('@google-cloud/vision').v1;

// Instantiates a client
const client = new ImageAnnotatorClient();

// You can send multiple files to be annotated, this sample demonstrates how to do this with
// one file. If you want to use multiple files, you have to create a request object for each file that you want annotated.
async function batchAnnotateFiles() {
  // First Specify the input config with the file's uri and its type.
  // Supported mime_type: application/pdf, image/tiff, image/gif
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
  const inputConfig = {
    mimeType: 'application/pdf',
    gcsSource: {
      uri: gcsSourceUri,
    },
  };

  // Set the type of annotation you want to perform on the file
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
  const features = [{type: 'DOCUMENT_TEXT_DETECTION'}];

  // Build the request object for that one file. Note: for additional files you have to create
  // additional file request objects and store them in a list to be used below.
  // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
  // specify which pages to process. The service can process up to 5 pages per document file.
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
  const fileRequest = {
    inputConfig: inputConfig,
    features: features,
    // Annotate the first two pages and the last one (max 5 pages)
    // First page starts at 1, and not 0. Last page is -1.
    pages: [1, 2, -1],
  };

  // Add each `AnnotateFileRequest` object to the batch request.
  const request = {
    requests: [fileRequest],
  };

  // Make the synchronous batch request.
  const [result] = await client.batchAnnotateFiles(request);

  // Process the results, just get the first result, since only one file was sent in this
  // sample.
  const responses = result.responses[0].responses;

  for (const response of responses) {
    console.log(`Full text: ${response.fullTextAnnotation.text}`);
    for (const page of response.fullTextAnnotation.pages) {
      for (const block of page.blocks) {
        console.log(`Block confidence: ${block.confidence}`);
        for (const paragraph of block.paragraphs) {
          console.log(` Paragraph confidence: ${paragraph.confidence}`);
          for (const word of paragraph.words) {
            const symbol_texts = word.symbols.map(symbol => symbol.text);
            const word_text = symbol_texts.join('');
            console.log(
              `  Word text: ${word_text} (confidence: ${word.confidence})`
            );
            for (const symbol of word.symbols) {
              console.log(
                `   Symbol: ${symbol.text} (confidence: ${symbol.confidence})`
              );
            }
          }
        }
      }
    }
  }
}

batchAnnotateFiles();

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der Vision-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Vision-Referenzdokumentation zur Python API.

Richten Sie zur Authentifizierung bei Vision die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


from google.cloud import vision_v1


def sample_batch_annotate_files(
    storage_uri="gs://cloud-samples-data/vision/document_understanding/kafka.pdf",
):
    """Perform batch file annotation."""
    mime_type = "application/pdf"

    client = vision_v1.ImageAnnotatorClient()

    gcs_source = {"uri": storage_uri}
    input_config = {"gcs_source": gcs_source, "mime_type": mime_type}
    features = [{"type_": vision_v1.Feature.Type.DOCUMENT_TEXT_DETECTION}]

    # The service can process up to 5 pages per document file.
    # Here we specify the first, second, and last page of the document to be
    # processed.
    pages = [1, 2, -1]
    requests = [{"input_config": input_config, "features": features, "pages": pages}]

    response = client.batch_annotate_files(requests=requests)
    for image_response in response.responses[0].responses:
        print(f"Full text: {image_response.full_text_annotation.text}")
        for page in image_response.full_text_annotation.pages:
            for block in page.blocks:
                print(f"\nBlock confidence: {block.confidence}")
                for par in block.paragraphs:
                    print(f"\tParagraph confidence: {par.confidence}")
                    for word in par.words:
                        print(f"\t\tWord confidence: {word.confidence}")
                        for symbol in word.symbols:
                            print(
                                "\t\t\tSymbol: {}, (confidence: {})".format(
                                    symbol.text, symbol.confidence
                                )
                            )

Jetzt testen

Probieren Sie die Online-Feature-Erkennung für einen kleinen Batch jetzt aus.

Sie können die bereits angegebene PDF-Datei verwenden oder stattdessen eine eigene Datei angeben.

Erste fünf Seiten einer PDF-Datei
gs://cloud-samples-data/vision/document_understanding/custom_0773375000.pdf

Für diese Anfrage wurden drei Feature-Typen angegeben:

  • DOCUMENT_TEXT_DETECTION
  • LABEL_DETECTION
  • CROP_HINTS

Durch Ändern des entsprechenden Objekts in der Anfrage ({"type": "FEATURE_NAME"}) können Sie andere Feature-Typen hinzufügen oder entfernen.

Wählen Sie zum Senden der Anfrage Ausführen aus.

Anfragetext:

{
  "requests": [
    {
      "inputConfig": {
        "gcsSource": {
          "uri": "gs://cloud-samples-data/vision/document_understanding/custom_0773375000.pdf"
        },
        "mimeType": "application/pdf"
      },
      "features": [
        {
          "type": "DOCUMENT_TEXT_DETECTION"
        },
        {
          "type": "LABEL_DETECTION"
        },
        {
          "type": "CROP_HINTS"
        }
      ],
      "pages": [
        1,
        2,
        3,
        4,
        5
      ]
    }
  ]
}