根據預設,Hadoop BigQuery 連接器會安裝在所有 Dataproc 1.0-1.2 叢集節點的 /usr/lib/hadoop/lib/
下。在 Spark 和 PySpark 環境中均可使用。
Dataproc 映像檔 1.5 以上版本:根據預設,BigQuery 連接器不會安裝在 Dataproc 映像檔 1.5 以上版本中。如要搭配這些版本使用:
使用這個初始化動作安裝 BigQuery 連接器。
提交工作時,請在
jars
參數中指定 BigQuery 連接器:--jars=gs://hadoop-lib/bigquery/bigquery-connector-hadoop3-latest.jar
在應用程式的 jar-with-dependencies 中納入 BigQuery 連接器類別。
避免發生衝突:如果應用程式使用的連接器版本不同於部署在 Dataproc 叢集中的連接器版本,您必須採取下列一項動作:
使用初始化動作建立新叢集,以安裝應用程式使用的連接器版本,或
將您使用的版本的連接器類別和連接器依附元件納入應用程式的 JAR 並重新安置,以免連接器版本與在 Dataproc 叢集中部署的連接器版本發生衝突 (請參閱這個Maven 中依附元件重新安置的範例)。
GsonBigQueryInputFormat 類別
GsonBigQueryInputFormat
會透過下列主要作業,以 JsonObject 格式為 Hadoop 提供 BigQuery 物件:
- 使用使用者指定的查詢選取 BigQuery 物件
- 將查詢結果平均分配至 Hadoop 節點
- 將分割項目剖析為 Java 物件,以便傳遞至 Mapper。Hadoop Mapper 類別會接收每個所選 BigQuery 物件的
JsonObject
表示法。
BigQueryInputFormat
類別可透過 Hadoop InputFormat 類別的擴充功能,提供 BigQuery 記錄的存取權。如要使用 BigQueryInputFormat 類別:
您必須在主要 Hadoop 工作中加入行,才能在 Hadoop 設定中設定參數。
InputFormat 類別必須設為
GsonBigQueryInputFormat
。
請參閱下列各節,瞭解如何符合這些規定。
輸入參數
- QualifiedInputTableId
- 要讀取的 BigQuery 資料表,格式如下:
optional-projectId:datasetId。tableId
範例:publicdata:samples.shakespeare
- 專案 ID
- 所有輸入作業都會在這個 BigQuery 專案 ID 下執行。
示例:my-first-cloud-project
// Set the job-level projectId. conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId); // Configure input parameters. BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId); // Set InputFormat. job.setInputFormatClass(GsonBigQueryInputFormat.class);
注意:
job
是指org.apache.hadoop.mapreduce.Job
,也就是要執行的 Hadoop 工作。conf
是指 Hadoop 工作的org.apache.hadoop.Configuration
。
Mapper
GsonBigQueryInputFormat
類別會從 BigQuery 讀取資料,並一次傳遞一個 BigQuery 物件,做為 Hadoop Mapper
函式的輸入內容。輸入內容的形式為一組,包含下列項目:
LongWritable
,記錄號碼JsonObject
,以 Json 格式呈現的 BigQuery 記錄
Mapper
會接受 LongWritable
和 JsonObject pair
做為輸入內容。
以下是 Mapper
的程式碼片段,適用於WordCount 範例工作。
// private static final LongWritable ONE = new LongWritable(1); // The configuration key used to specify the BigQuery field name // ("column name"). public static final String WORDCOUNT_WORD_FIELDNAME_KEY = "mapred.bq.samples.wordcount.word.key"; // Default value for the configuration entry specified by // WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in // publicdata:samples.shakespeare or 'repository_name' // in publicdata:samples.github_timeline. public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word"; /** * The mapper function for WordCount. */ public static class Map extends Mapper <LongWritable, JsonObject, Text, LongWritable> { private static final LongWritable ONE = new LongWritable(1); private Text word = new Text(); private String wordKey; @Override public void setup(Context context) throws IOException, InterruptedException { // Find the runtime-configured key for the field name we're looking for // in the map task. Configuration conf = context.getConfiguration(); wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY, WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT); } @Override public void map(LongWritable key, JsonObject value, Context context) throws IOException, InterruptedException { JsonElement countElement = value.get(wordKey); if (countElement != null) { String wordInRecord = countElement.getAsString(); word.set(wordInRecord); // Write out the key, value pair (write out a value of 1, which will be // added to the total count for this word in the Reducer). context.write(word, ONE); } } }
IndirectBigQueryOutputFormat 類別
IndirectBigQueryOutputFormat
提供 Hadoop 且可讓您將 JsonObject
值直接寫入 BigQuery 表格。這個類別可透過 Hadoop OutputFormat 類別的擴充功能,提供 BigQuery 記錄的存取權。如要正確使用,必須在 Hadoop 設定中設定數個參數,且 OutputFormat 類別必須設為 IndirectBigQueryOutputFormat
。下列範例說明要設定的參數,以及正確使用 IndirectBigQueryOutputFormat
所需的幾行程式碼。
輸出參數
- 專案 ID
- 所有輸出作業都會在這個 BigQuery projectId 下執行。
範例: "my-first-cloud-project" - QualifiedOutputTableId
- 要將最終作業結果寫入的 BigQuery 資料集,格式為 optional-projectId:datasetId.tableId。
您的專案中應已存在 datasetId。outputDatasetId系統會在 BigQuery 中建立 _hadoop_temporary 資料集,用於暫時性結果。請確認這不會與現有資料集發生衝突。
示例:
test_output_dataset.wordcount_output
my-first-cloud-project:test_output_dataset.wordcount_output
- outputTableFieldSchema
- 定義輸出 BigQuery 資料表的結構定義
- GcsOutputPath
- 用於儲存暫時性 Cloud Storage 資料的輸出路徑 (
gs://bucket/dir/
)
// Define the schema we will be using for the output BigQuery table. List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>(); outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING")); outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER")); TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema); // Create the job and get its configuration. Job job = new Job(parser.getConfiguration(), "wordcount"); Configuration conf = job.getConfiguration(); // Set the job-level projectId. conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId); // Configure input. BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId); // Configure output. BigQueryOutputConfiguration.configure( conf, outputQualifiedTableId, outputSchema, outputGcsPath, BigQueryFileFormat.NEWLINE_DELIMITED_JSON, TextOutputFormat.class); // (Optional) Configure the KMS key used to encrypt the output table. BigQueryOutputConfiguration.setKmsKeyName( conf, "projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1"); );
Reducer
IndirectBigQueryOutputFormat
類別會將資料寫入 BigQuery。這項函式會將鍵和 JsonObject
值做為輸入內容,並只將 JsonObject 值寫入 BigQuery (系統會忽略鍵)。JsonObject
應包含以 JSON 格式編寫的 BigQuery 記錄。Reducer 應輸出任意類型的鍵 (WordCount 範例工作使用 NullWritable
) 和 JsonObject
值組合。以下是 WordCount 範例工作的 Reducer。
/** * Reducer function for WordCount. */ public static class Reduce extends Reducer<Text, LongWritable, JsonObject, NullWritable> { @Override public void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { // Add up the values to get a total number of occurrences of our word. long count = 0; for (LongWritable val : values) { count = count + val.get(); } JsonObject jsonObject = new JsonObject(); jsonObject.addProperty("Word", key.toString()); jsonObject.addProperty("Count", count); // Key does not matter. context.write(jsonObject, NullWritable.get()); } }
清除所用資源
工作完成後,請清理 Cloud Storage 匯出路徑。
job.waitForCompletion(true); GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());
您可以在 Google Cloud 控制台中,查看 BigQuery 輸出資料表中的字詞計數。
WordCount 範例作业的完整程式碼
以下程式碼是簡易的 WordCount 工作範例,可匯總 BigQuery 中物件的字數。
package com.google.cloud.hadoop.io.bigquery.samples;
import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.hadoop.io.bigquery.BigQueryConfiguration;
import com.google.cloud.hadoop.io.bigquery.BigQueryFileFormat;
import com.google.cloud.hadoop.io.bigquery.GsonBigQueryInputFormat;
import com.google.cloud.hadoop.io.bigquery.output.BigQueryOutputConfiguration;
import com.google.cloud.hadoop.io.bigquery.output.IndirectBigQueryOutputFormat;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Sample program to run the Hadoop Wordcount example over tables in BigQuery.
*/
public class WordCount {
// The configuration key used to specify the BigQuery field name
// ("column name").
public static final String WORDCOUNT_WORD_FIELDNAME_KEY =
"mapred.bq.samples.wordcount.word.key";
// Default value for the configuration entry specified by
// WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in
// publicdata:samples.shakespeare or 'repository_name'
// in publicdata:samples.github_timeline.
public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word";
// Guava might not be available, so define a null / empty helper:
private static boolean isStringNullOrEmpty(String toTest) {
return toTest == null || "".equals(toTest);
}
/**
* The mapper function for WordCount. For input, it consumes a LongWritable
* and JsonObject as the key and value. These correspond to a row identifier
* and Json representation of the row's values/columns.
* For output, it produces Text and a LongWritable as the key and value.
* These correspond to the word and a count for the number of times it has
* occurred.
*/
public static class Map
extends Mapper <LongWritable, JsonObject, Text, LongWritable> {
private static final LongWritable ONE = new LongWritable(1);
private Text word = new Text();
private String wordKey;
@Override
public void setup(Context context)
throws IOException, InterruptedException {
// Find the runtime-configured key for the field name we're looking for in
// the map task.
Configuration conf = context.getConfiguration();
wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY, WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT);
}
@Override
public void map(LongWritable key, JsonObject value, Context context)
throws IOException, InterruptedException {
JsonElement countElement = value.get(wordKey);
if (countElement != null) {
String wordInRecord = countElement.getAsString();
word.set(wordInRecord);
// Write out the key, value pair (write out a value of 1, which will be
// added to the total count for this word in the Reducer).
context.write(word, ONE);
}
}
}
/**
* Reducer function for WordCount. For input, it consumes the Text and
* LongWritable that the mapper produced. For output, it produces a JsonObject
* and NullWritable. The JsonObject represents the data that will be
* loaded into BigQuery.
*/
public static class Reduce
extends Reducer<Text, LongWritable, JsonObject, NullWritable> {
@Override
public void reduce(Text key, Iterable<LongWritable> values, Context context)
throws IOException, InterruptedException {
// Add up the values to get a total number of occurrences of our word.
long count = 0;
for (LongWritable val : values) {
count = count + val.get();
}
JsonObject jsonObject = new JsonObject();
jsonObject.addProperty("Word", key.toString());
jsonObject.addProperty("Count", count);
// Key does not matter.
context.write(jsonObject, NullWritable.get());
}
}
/**
* Configures and runs the main Hadoop job. Takes a String[] of 5 parameters:
* [ProjectId] [QualifiedInputTableId] [InputTableFieldName]
* [QualifiedOutputTableId] [GcsOutputPath]
*
* ProjectId - Project under which to issue the BigQuery
* operations. Also serves as the default project for table IDs that don't
* specify a project for the table.
*
* QualifiedInputTableId - Input table ID of the form
* (Optional ProjectId):[DatasetId].[TableId]
*
* InputTableFieldName - Name of the field to count in the
* input table, e.g., 'word' in publicdata:samples.shakespeare or
* 'repository_name' in publicdata:samples.github_timeline.
*
* QualifiedOutputTableId - Input table ID of the form
* (Optional ProjectId):[DatasetId].[TableId]
*
* GcsOutputPath - The output path to store temporary
* Cloud Storage data, e.g., gs://bucket/dir/
*
* @param args a String[] containing ProjectId, QualifiedInputTableId,
* InputTableFieldName, QualifiedOutputTableId, and GcsOutputPath.
* @throws IOException on IO Error.
* @throws InterruptedException on Interrupt.
* @throws ClassNotFoundException if not all classes are present.
*/
public static void main(String[] args)
throws IOException, InterruptedException, ClassNotFoundException {
// GenericOptionsParser is a utility to parse command line arguments
// generic to the Hadoop framework. This example doesn't cover the specifics,
// but recognizes several standard command line arguments, enabling
// applications to easily specify a NameNode, a ResourceManager, additional
// configuration resources, etc.
GenericOptionsParser parser = new GenericOptionsParser(args);
args = parser.getRemainingArgs();
// Make sure we have the right parameters.
if (args.length != 5) {
System.out.println(
"Usage: hadoop jar bigquery_wordcount.jar [ProjectId] [QualifiedInputTableId] "
+ "[InputTableFieldName] [QualifiedOutputTableId] [GcsOutputPath]\n"
+ " ProjectId - Project under which to issue the BigQuery operations. Also serves "
+ "as the default project for table IDs that don't explicitly specify a project for "
+ "the table.\n"
+ " QualifiedInputTableId - Input table ID of the form "
+ "(Optional ProjectId):[DatasetId].[TableId]\n"
+ " InputTableFieldName - Name of the field to count in the input table, e.g., "
+ "'word' in publicdata:samples.shakespeare or 'repository_name' in "
+ "publicdata:samples.github_timeline.\n"
+ " QualifiedOutputTableId - Input table ID of the form "
+ "(Optional ProjectId):[DatasetId].[TableId]\n"
+ " GcsOutputPath - The output path to store temporary Cloud Storage data, e.g., "
+ "gs://bucket/dir/");
System.exit(1);
}
// Get the individual parameters from the command line.
String projectId = args[0];
String inputQualifiedTableId = args[1];
String inputTableFieldId = args[2];
String outputQualifiedTableId = args[3];
String outputGcsPath = args[4];
// Define the schema we will be using for the output BigQuery table.
List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>();
outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING"));
outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER"));
TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema);
// Create the job and get its configuration.
Job job = new Job(parser.getConfiguration(), "wordcount");
Configuration conf = job.getConfiguration();
// Set the job-level projectId.
conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId);
// Configure input.
BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId);
// Configure output.
BigQueryOutputConfiguration.configure(
conf,
outputQualifiedTableId,
outputSchema,
outputGcsPath,
BigQueryFileFormat.NEWLINE_DELIMITED_JSON,
TextOutputFormat.class);
// (Optional) Configure the KMS key used to encrypt the output table.
BigQueryOutputConfiguration.setKmsKeyName(
conf,
"projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1");
conf.set(WORDCOUNT_WORD_FIELDNAME_KEY, inputTableFieldId);
// This helps Hadoop identify the Jar which contains the mapper and reducer
// by specifying a class in that Jar. This is required if the jar is being
// passed on the command line to Hadoop.
job.setJarByClass(WordCount.class);
// Tell the job what data the mapper will output.
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(GsonBigQueryInputFormat.class);
// Instead of using BigQueryOutputFormat, we use the newer
// IndirectBigQueryOutputFormat, which works by first buffering all the data
// into a Cloud Storage temporary file, and then on commitJob, copies all data from
// Cloud Storage into BigQuery in one operation. Its use is recommended for large jobs
// since it only requires one BigQuery "load" job per Hadoop/Spark job, as
// compared to BigQueryOutputFormat, which performs one BigQuery job for each
// Hadoop/Spark task.
job.setOutputFormatClass(IndirectBigQueryOutputFormat.class);
job.waitForCompletion(true);
// After the job completes, clean up the Cloud Storage export paths.
GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());
// You can view word counts in the BigQuery output table at
// https://console.cloud.google.com/.
}
}
Java 版本
BigQuery 連接器需要 Java 8。
Apache Maven 依附元件資訊
<dependency> <groupId>com.google.cloud.bigdataoss</groupId> <artifactId>bigquery-connector</artifactId> <version>insert "hadoopX-X.X.X" connector version number here</version> </dependency>
詳情請參閱 BigQuery 連接器的版本資訊和 Javadoc 參考資料。