使用 BigQuery 连接器编写 MapReduce 作业

BigQuery 连接器默认安装在 /usr/lib/hadoop/lib/ 下的所有 Dataproc 1.0-1.2 集群节点上。Spark 和 PySpark 环境中均可使用该连接器。

Dataproc 映像版本 1.5+:BigQuery 连接器无法默认安装到 Dataproc 映像版本 1.5 及更高版本中。如需将该连接器用于这些版本,请执行以下操作:

  1. 通过初始化操作安装 BigQuery 连接器

  2. 提交作业时,在 jars 参数中指定 BigQuery 连接器:

    --jars=gs://hadoop-lib/bigquery/bigquery-connector-hadoop3-latest.jar

  3. 在应用程序的 jar-with-dependencies 中包含 BigQuery 连接器类

避免冲突:如果您的应用使用的连接器版本与 Dataproc 集群上部署的连接器版本不同,则您必须执行以下操作之一:

  1. 使用初始化操作创建一个新集群,此操作可安装应用使用的连接器版本;或者

  2. 将您所用版本的连接器类和连接器依赖项添加并重新定位到应用的 jar 中,以避免连接器版本与 Dataproc 集群上部署的连接器版本之间发生冲突(请参阅此 Maven 中依赖项重新定位示例)。

GsonBigQueryInputFormat 类

GsonBigQueryInputFormat 通过以下主要操作为 Hadoop 提供了 JsonObject 格式的 BigQuery 对象:

  • 使用用户指定的查询来选择 BigQuery 对象
  • 在 Hadoop 节点之间均匀拆分查询结果
  • 将拆分结果解析为 java 对象以传递给 mapper。 Hadoop Mapper 类可接收以 JsonObject 形式表示的每个选定 BigQuery 对象。

BigQueryInputFormat 类通过 Hadoop InputFormat 类的扩展程序提供了 BigQuery 记录的访问权限。如需使用 BigQueryInputFormat 类,请执行以下操作:

  1. 要在 Hadoop 配置中设置参数,您必须将几行代码添加到主要 Hadoop 作业中。

  2. 必须将 InputFormat 类设置为 GsonBigQueryInputFormat

以下各部分介绍如何满足这些要求。

输入参数

QualifiedInputTableId
要读取的 BigQuery 表,格式如下: optional-projectIddatasetId.tableId
示例publicdata:samples.shakespeare
projectId
发生所有输入操作的 BigQuery projectId。
示例my-first-cloud-project
// Set the job-level projectId.
conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId);

// Configure input parameters.
BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId);

// Set InputFormat.
job.setInputFormatClass(GsonBigQueryInputFormat.class);

注意:

  • job 指的是 org.apache.hadoop.mapreduce.Job(表示要运行的 Hadoop 作业)。
  • conf 表示 Hadoop 作业的 org.apache.hadoop.Configuration

Mapper

GsonBigQueryInputFormat 类从 BigQuery 读取内容,并一次传递一个 BigQuery 对象作为 Hadoop Mapper 函数的输入。输入采用对的形式,其中包含以下内容:

  • LongWritable,记录编号
  • JsonObject,Json 格式的 BigQuery 记录

Mapper 接受 LongWritableJsonObject pair 作为输入。

以下是用于示例 WordCount 作业的 Mapper 代码段。

  // private static final LongWritable ONE = new LongWritable(1);
  // The configuration key used to specify the BigQuery field name
  // ("column name").
  public static final String WORDCOUNT_WORD_FIELDNAME_KEY =
      "mapred.bq.samples.wordcount.word.key";

  // Default value for the configuration entry specified by
  // WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in
  // publicdata:samples.shakespeare or 'repository_name'
  // in publicdata:samples.github_timeline.
  public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word";

  /**
   * The mapper function for WordCount.
   */
  public static class Map
      extends Mapper <LongWritable, JsonObject, Text, LongWritable> {
    private static final LongWritable ONE = new LongWritable(1);
    private Text word = new Text();
    private String wordKey;

    @Override
    public void setup(Context context)
        throws IOException, InterruptedException {
      // Find the runtime-configured key for the field name we're looking for
      // in the map task.
      Configuration conf = context.getConfiguration();
      wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY,
          WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT);
    }

    @Override
    public void map(LongWritable key, JsonObject value, Context context)
        throws IOException, InterruptedException {
      JsonElement countElement = value.get(wordKey);
      if (countElement != null) {
        String wordInRecord = countElement.getAsString();
        word.set(wordInRecord);
        // Write out the key, value pair (write out a value of 1, which will be
        // added to the total count for this word in the Reducer).
        context.write(word, ONE);
      }
    }
  }

IndirectBigQueryOutputFormat 类

IndirectBigQueryOutputFormat 允许 Hadoop 将 JsonObject 值直接写入 BigQuery 表。该类通过 Hadoop OutputFormat 类的扩展程序提供了 BigQuery 记录的访问权限。要正确使用它,您必须在 Hadoop 配置中设置几个参数,并且必须将 OutputFormat 类设置为 IndirectBigQueryOutputFormat。要设置的参数示例以及正确使用 IndirectBigQueryOutputFormat 所需的代码行如下。

输出参数

projectId
发生所有输出操作的 BigQuery projectId。
示例: “my-first-cloud-project”
QualifiedOutputTableId
将最终作业结果写入到的 BigQuery 数据集,格式为 optional-projectId:datasetId.tableId。 datasetId 应已经存在于您的项目中。 将在 BigQuery 中为临时结果创建 outputDatasetId_hadoop_temporary 数据集。确保这与现有数据集不发生冲突。
示例
test_output_dataset.wordcount_output
my-first-cloud-project:test_output_dataset.wordcount_output
outputTableFieldSchema
定义了输出 BigQuery 表的架构的架构
GcsOutputPath
存储临时 Cloud Storage 数据的输出路径 (gs://bucket/dir/)
    // Define the schema we will be using for the output BigQuery table.
    List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>();
    outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING"));
    outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER"));
    TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema);

    // Create the job and get its configuration.
    Job job = new Job(parser.getConfiguration(), "wordcount");
    Configuration conf = job.getConfiguration();

    // Set the job-level projectId.
    conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId);

    // Configure input.
    BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId);

    // Configure output.
    BigQueryOutputConfiguration.configure(
        conf,
        outputQualifiedTableId,
        outputSchema,
        outputGcsPath,
        BigQueryFileFormat.NEWLINE_DELIMITED_JSON,
        TextOutputFormat.class);

    // (Optional) Configure the KMS key used to encrypt the output table.
    BigQueryOutputConfiguration.setKmsKeyName(
        conf,
        "projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1");
);

Reducer

IndirectBigQueryOutputFormat 类向 BigQuery 写入内容。 它将一个键和一个 JsonObject 值作为输入,并只将 JsonObject 值写入 BigQuery(该键被忽略)。JsonObject 应包含 Json 格式的 BigQuery 记录。缩减器应输出任意类型的键(在我们的示例 WordCount 作业中使用了 NullWritable)和 JsonObject值对。示例 WordCount 作业的 Reducer 如下所示。

  /**
   * Reducer function for WordCount.
   */
  public static class Reduce
      extends Reducer<Text, LongWritable, JsonObject, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<LongWritable> values, Context context)
        throws IOException, InterruptedException {
      // Add up the values to get a total number of occurrences of our word.
      long count = 0;
      for (LongWritable val : values) {
        count = count + val.get();
      }

      JsonObject jsonObject = new JsonObject();
      jsonObject.addProperty("Word", key.toString());
      jsonObject.addProperty("Count", count);
      // Key does not matter.
      context.write(jsonObject, NullWritable.get());
    }
  }

清理

作业完成后,请清理 Cloud Storage 导出路径。

job.waitForCompletion(true);
GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());

您可以进入 Google Cloud 控制台的 BigQuery 输出表查看字数统计。

示例 WordCount 作业的完整代码

下面的代码是一个简单的 WordCount 作业示例,它汇总了 BigQuery 中对象的字数。

package com.google.cloud.hadoop.io.bigquery.samples;

import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.hadoop.io.bigquery.BigQueryConfiguration;
import com.google.cloud.hadoop.io.bigquery.BigQueryFileFormat;
import com.google.cloud.hadoop.io.bigquery.GsonBigQueryInputFormat;
import com.google.cloud.hadoop.io.bigquery.output.BigQueryOutputConfiguration;
import com.google.cloud.hadoop.io.bigquery.output.IndirectBigQueryOutputFormat;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

/**
 * Sample program to run the Hadoop Wordcount example over tables in BigQuery.
 */
public class WordCount {

 // The configuration key used to specify the BigQuery field name
  // ("column name").
  public static final String WORDCOUNT_WORD_FIELDNAME_KEY =
      "mapred.bq.samples.wordcount.word.key";

  // Default value for the configuration entry specified by
  // WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in
  // publicdata:samples.shakespeare or 'repository_name'
  // in publicdata:samples.github_timeline.
  public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word";

  // Guava might not be available, so define a null / empty helper:
  private static boolean isStringNullOrEmpty(String toTest) {
    return toTest == null || "".equals(toTest);
  }

  /**
   * The mapper function for WordCount. For input, it consumes a LongWritable
   * and JsonObject as the key and value. These correspond to a row identifier
   * and Json representation of the row's values/columns.
   * For output, it produces Text and a LongWritable as the key and value.
   * These correspond to the word and a count for the number of times it has
   * occurred.
   */

  public static class Map
      extends Mapper <LongWritable, JsonObject, Text, LongWritable> {
    private static final LongWritable ONE = new LongWritable(1);
    private Text word = new Text();
    private String wordKey;

    @Override
    public void setup(Context context)
        throws IOException, InterruptedException {
      // Find the runtime-configured key for the field name we're looking for in
      // the map task.
      Configuration conf = context.getConfiguration();
      wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY, WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT);
    }

    @Override
    public void map(LongWritable key, JsonObject value, Context context)
        throws IOException, InterruptedException {
      JsonElement countElement = value.get(wordKey);
      if (countElement != null) {
        String wordInRecord = countElement.getAsString();
        word.set(wordInRecord);
        // Write out the key, value pair (write out a value of 1, which will be
        // added to the total count for this word in the Reducer).
        context.write(word, ONE);
      }
    }
  }

  /**
   * Reducer function for WordCount. For input, it consumes the Text and
   * LongWritable that the mapper produced. For output, it produces a JsonObject
   * and NullWritable. The JsonObject represents the data that will be
   * loaded into BigQuery.
   */
  public static class Reduce
      extends Reducer<Text, LongWritable, JsonObject, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<LongWritable> values, Context context)
        throws IOException, InterruptedException {
      // Add up the values to get a total number of occurrences of our word.
      long count = 0;
      for (LongWritable val : values) {
        count = count + val.get();
      }

      JsonObject jsonObject = new JsonObject();
      jsonObject.addProperty("Word", key.toString());
      jsonObject.addProperty("Count", count);
      // Key does not matter.
      context.write(jsonObject, NullWritable.get());
    }
  }

  /**
   * Configures and runs the main Hadoop job. Takes a String[] of 5 parameters:
   * [ProjectId] [QualifiedInputTableId] [InputTableFieldName]
   * [QualifiedOutputTableId] [GcsOutputPath]
   *
   * ProjectId - Project under which to issue the BigQuery
   * operations. Also serves as the default project for table IDs that don't
   * specify a project for the table.
   *
   * QualifiedInputTableId - Input table ID of the form
   * (Optional ProjectId):[DatasetId].[TableId]
   *
   * InputTableFieldName - Name of the field to count in the
   * input table, e.g., 'word' in publicdata:samples.shakespeare or
   * 'repository_name' in publicdata:samples.github_timeline.
   *
   * QualifiedOutputTableId - Input table ID of the form
   * (Optional ProjectId):[DatasetId].[TableId]
   *
   * GcsOutputPath - The output path to store temporary
   * Cloud Storage data, e.g., gs://bucket/dir/
   *
   * @param args a String[] containing ProjectId, QualifiedInputTableId,
   *     InputTableFieldName, QualifiedOutputTableId, and GcsOutputPath.
   * @throws IOException on IO Error.
   * @throws InterruptedException on Interrupt.
   * @throws ClassNotFoundException if not all classes are present.
   */
  public static void main(String[] args)
      throws IOException, InterruptedException, ClassNotFoundException {

    // GenericOptionsParser is a utility to parse command line arguments
    // generic to the Hadoop framework. This example doesn't cover the specifics,
    // but recognizes several standard command line arguments, enabling
    // applications to easily specify a NameNode, a ResourceManager, additional
    // configuration resources, etc.
    GenericOptionsParser parser = new GenericOptionsParser(args);
    args = parser.getRemainingArgs();

    // Make sure we have the right parameters.
    if (args.length != 5) {
      System.out.println(
          "Usage: hadoop jar bigquery_wordcount.jar [ProjectId] [QualifiedInputTableId] "
              + "[InputTableFieldName] [QualifiedOutputTableId] [GcsOutputPath]\n"
              + "    ProjectId - Project under which to issue the BigQuery operations. Also serves "
              + "as the default project for table IDs that don't explicitly specify a project for "
              + "the table.\n"
              + "    QualifiedInputTableId - Input table ID of the form "
              + "(Optional ProjectId):[DatasetId].[TableId]\n"
              + "    InputTableFieldName - Name of the field to count in the input table, e.g., "
              + "'word' in publicdata:samples.shakespeare or 'repository_name' in "
              + "publicdata:samples.github_timeline.\n"
              + "    QualifiedOutputTableId - Input table ID of the form "
              + "(Optional ProjectId):[DatasetId].[TableId]\n"
              + "    GcsOutputPath - The output path to store temporary Cloud Storage data, e.g., "
              + "gs://bucket/dir/");
      System.exit(1);
    }

    // Get the individual parameters from the command line.
    String projectId = args[0];
    String inputQualifiedTableId = args[1];
    String inputTableFieldId = args[2];
    String outputQualifiedTableId = args[3];
    String outputGcsPath = args[4];

   // Define the schema we will be using for the output BigQuery table.
    List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>();
    outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING"));
    outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER"));
    TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema);

    // Create the job and get its configuration.
    Job job = new Job(parser.getConfiguration(), "wordcount");
    Configuration conf = job.getConfiguration();

    // Set the job-level projectId.
    conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId);

    // Configure input.
    BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId);

    // Configure output.
    BigQueryOutputConfiguration.configure(
        conf,
        outputQualifiedTableId,
        outputSchema,
        outputGcsPath,
        BigQueryFileFormat.NEWLINE_DELIMITED_JSON,
        TextOutputFormat.class);

    // (Optional) Configure the KMS key used to encrypt the output table.
    BigQueryOutputConfiguration.setKmsKeyName(
        conf,
        "projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1");

    conf.set(WORDCOUNT_WORD_FIELDNAME_KEY, inputTableFieldId);

    // This helps Hadoop identify the Jar which contains the mapper and reducer
    // by specifying a class in that Jar. This is required if the jar is being
    // passed on the command line to Hadoop.
    job.setJarByClass(WordCount.class);

    // Tell the job what data the mapper will output.
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(LongWritable.class);
    job.setMapperClass(Map.class);
    job.setReducerClass(Reduce.class);
    job.setInputFormatClass(GsonBigQueryInputFormat.class);

    // Instead of using BigQueryOutputFormat, we use the newer
    // IndirectBigQueryOutputFormat, which works by first buffering all the data
    // into a Cloud Storage temporary file, and then on commitJob, copies all data from
    // Cloud Storage into BigQuery in one operation. Its use is recommended for large jobs
    // since it only requires one BigQuery "load" job per Hadoop/Spark job, as
    // compared to BigQueryOutputFormat, which performs one BigQuery job for each
    // Hadoop/Spark task.
    job.setOutputFormatClass(IndirectBigQueryOutputFormat.class);

    job.waitForCompletion(true);

    // After the job completes, clean up the Cloud Storage export paths.
    GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());

    // You can view word counts in the BigQuery output table at
    // https://console.cloud.google.com/.
  }
}

Java 版本

BigQuery 连接器需要 Java 8。

Apache Maven 依赖关系信息

<dependency>
    <groupId>com.google.cloud.bigdataoss</groupId>
    <artifactId>bigquery-connector</artifactId>
    <version>insert "hadoopX-X.X.X" connector version number here</version>
</dependency>

如需了解详情,请参阅 BigQuery 连接器版本说明Javadoc 参考