Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Mengonfigurasi set data eksternal
Halaman ini menjelaskan langkah opsional untuk mengonfigurasi set data eksternal untuk
deployment Data Foundation Cortex Framework. Beberapa kasus penggunaan lanjutan mungkin memerlukan set data eksternal untuk melengkapi sistem pencatatan perusahaan. Selain pertukaran eksternal yang digunakan dari
berbagi BigQuery (sebelumnya Analytics Hub),
beberapa set data mungkin memerlukan metode kustom atau yang disesuaikan untuk menyerap data
dan menggabungkannya dengan model pelaporan.
Untuk mengaktifkan set data eksternal berikut, tetapkan k9.deployDataset ke True
jika Anda ingin Set Data di-deploy.
Konfigurasi Directed Acyclic Graphs (DAG) untuk set data eksternal yang didukung dengan mengikuti langkah-langkah berikut:
Kalender Hari Libur: DAG ini mengambil tanggal khusus dari
PyPi Holidays.
Sesuaikan daftar negara, daftar tahun, serta parameter DAG lainnya untuk mengambil hari libur di holiday_calendar.ini.
Tren: DAG ini mengambil Minat dari Waktu ke Waktu untuk serangkaian istilah tertentu dari tren Google Penelusuran.
Persyaratan dapat dikonfigurasi di trends.ini.
Setelah menjalankan pertama kali, sesuaikan start_date ke 'today 7-d' di
trends.ini.
Pahami hasil yang berasal dari berbagai istilah untuk menyesuaikan parameter.
Sebaiknya partisi daftar besar ke beberapa salinan DAG ini yang berjalan pada waktu yang berbeda.
Untuk mengetahui informasi selengkapnya tentang library pokok yang digunakan, lihat Pytrends.
Set data ini harus dibuat di region yang sama dengan set data lainnya sebelum menjalankan deployment. Jika set data tidak tersedia di region Anda, Anda dapat melanjutkan
dengan petunjuk berikut untuk mentransfer data ke region yang dipilih:
Saat diminta, biarkan noaa_global_forecast_system sebagai nama set data. Jika perlu, sesuaikan nama set data dan tabel dalam klausa FROM di weather_daily.sql.
Ulangi penelusuran listingan untuk Set Data OpenStreetMap Public Dataset.
Sesuaikan klausa FROM yang berisi:
BigQuery-public-data.geo_openstreetmap.planet_layers di
postcode.sql.
Insight ESG dan keberlanjutan: Cortex Framework menggabungkan data performa pemasok SAP dengan insight ESG lanjutan untuk membandingkan performa pengiriman, keberlanjutan, dan risiko secara lebih holistik di seluruh operasi global. Untuk mengetahui informasi selengkapnya, lihat sumber data Dun & Bradstreet.
Pertimbangan umum
Berbagi
hanya didukung di lokasi Uni Eropa dan AS,
dan beberapa set data, seperti NOAA Global Forecast, hanya ditawarkan
di satu lokasi multi.
Jika Anda menargetkan lokasi yang berbeda dengan lokasi yang tersedia untuk set data yang diperlukan, sebaiknya buat kueri terjadwal untuk menyalin rekaman baru dari set data tertaut Berbagi, lalu gunakan layanan transfer untuk menyalin rekaman baru tersebut ke set data yang berada di lokasi atau region yang sama dengan deployment Anda lainnya.
Kemudian, Anda perlu menyesuaikan file SQL.
Sebelum menyalin DAG ini ke Cloud Composer, tambahkan modul python yang diperlukan sebagai dependensi:
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-04 UTC."],[[["\u003cp\u003eThis page provides instructions for configuring optional external datasets within the Cortex Framework Data Foundation deployment, which can be utilized to enhance enterprise systems of record with external data.\u003c/p\u003e\n"],["\u003cp\u003eConfiguring external datasets involves setting \u003ccode\u003ek9.deployDataset\u003c/code\u003e to \u003ccode\u003eTrue\u003c/code\u003e and setting up Directed Acyclic Graphs (DAGs) for each supported dataset like the holiday calendar, search trends, weather, and sustainability/ESG data.\u003c/p\u003e\n"],["\u003cp\u003eThe Holiday Calendar DAG retrieves special dates from PyPi Holidays, allowing customization of countries and years through the \u003ccode\u003eholiday_calendar.ini\u003c/code\u003e file.\u003c/p\u003e\n"],["\u003cp\u003eThe Trends DAG fetches "Interest Over Time" data from Google Search Trends, with configurable terms and date ranges in \u003ccode\u003etrends.ini\u003c/code\u003e, and recommends multiple copies for large term lists.\u003c/p\u003e\n"],["\u003cp\u003eThe Weather DAG uses public data from \u003ccode\u003eBigQuery-public-data.geo_openstreetmap.planet_layers\u003c/code\u003e and the \u003ccode\u003enoaa_global_forecast_system\u003c/code\u003e from Analytics Hub, both of which need to be available in the same region as other datasets.\u003c/p\u003e\n"]]],[],null,["# Configure external datasets\n===========================\n\nThis page describes an optional step to configure external datasets for\nthe Cortex Framework Data Foundation deployment. Some advanced\nuse cases might require external datasets to complement an enterprise system of\nrecord. In addition to external exchanges consumed from\n[BigQuery sharing (formerly Analytics Hub)](/bigquery/docs/analytics-hub-introduction),\nsome datasets might need custom or tailored methods to ingest data\nand join them with the reporting models.\n\nTo enable the following external datasets, set `k9.deployDataset` to `True`\nif you want Dataset to be deployed.\n\nConfigure the Directed Acyclic Graphs (DAGs) for the supported external datasets\nfollowing these steps:\n\n1. **Holiday Calendar:** This DAG retrieves the special dates from\n [PyPi Holidays](https://pypi.org/project/holidays/).\n\n | **Note:** If using sample data, keep default values.\n 1. Adjust the list of countries, the list of years, as well as other DAG parameters to retrieve holidays in [`holiday_calendar.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/holiday_calendar/holiday_calendar.ini).\n2. **Trends** : This DAG retrieves *Interest Over Time* for a specific set\n of terms from [Google Search trends](https://trends.google.com/trends/).\n The terms can be configured in [`trends.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/trends/trends.ini).\n\n 1. After an initial run, adjust the `start_date` to `'today 7-d'` in [`trends.ini`](https://github.com/GoogleCloudPlatform/cortex-data-foundation/blob/main/src/k9/src/trends/trends.ini).\n 2. Get familiarized with the results coming from the different terms to tune parameters.\n 3. We recommend partitioning large lists to multiple copies of this DAG running at different times.\n 4. For more information about the underlying library being used, see [Pytrends](https://pypi.org/project/pytrends/).\n3. **Weather** : By default, this DAG uses the publicly available\n test dataset [`BigQuery-public-data.geo_openstreetmap.planet_layers`](https://console.cloud.google.com/bigquery/analytics-hub/exchanges(analyticshub:search)?queryText=open%20street%20map).\n The query also relies on an NOAA dataset only available\n through Sharing: [`noaa_global_forecast_system`](https://console.cloud.google.com/bigquery/analytics-hub/exchanges(analyticshub:search)?queryText=noaa%20global%20forecast).\n\n **This dataset needs to be created in the same region as the other datasets prior to executing deployment**. If the datasets aren't available in your region, you can continue\n with the following instructions to transfer the data into the chosen region:\n 1. Go to the [**Sharing (Analytics Hub)**](https://console.cloud.google.com/bigquery/analytics-hub) page.\n 2. Click **Search listings**.\n 3. Search for **NOAA Global Forecast System**.\n 4. Click **Subscribe**.\n 5. When prompted, keep `noaa_global_forecast_system` as the name of the dataset. If needed, adjust the name of the dataset and table in the FROM clauses in `weather_daily.sql`.\n 6. Repeat the listing search for Dataset `OpenStreetMap Public Dataset`.\n 7. Adjust the `FROM` clauses containing: `BigQuery-public-data.geo_openstreetmap.planet_layers` in `postcode.sql`.\n4. **Sustainability and ESG insights** : Cortex Framework combines\n SAP supplier performance data with advanced ESG insights to compare\n delivery performance, sustainability and risks more holistically across\n global operations. For more information,\n see the [Dun \\& Bradstreet data source](/cortex/docs/dun-and-bradstreet).\n\nGeneral considerations\n----------------------\n\n- [Sharing](/bigquery/docs/analytics-hub-introduction)\n is only supported in EU and US locations,\n and some datasets, such as NOAA Global Forecast, are only offered\n in a single multi location.\n\n If you are targeting a location different\n from the one available for the required dataset, we recommended to create\n a [scheduled query](/bigquery/docs/scheduling-queries)\n to copy the new records from the Sharing\n linked dataset followed by a [transfer service](/bigquery/docs/dts-introduction)\n to copy those new records into a dataset located\n in the same location or region as the rest of your deployment.\n You then need to adjust the SQL files.\n- Before copying these DAGs to Cloud Composer, add the required\n python modules [as dependencies](/composer/docs/how-to/using/installing-python-dependencies#options_for_managing_python_packages):\n\n Required modules:\n pytrends~=4.9.2\n holidays"]]