Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Nesta página, descrevemos como otimizar a performance dos seus clusters do AlloyDB para PostgreSQL usando o recomendador de cluster com provisionamento insuficiente.
O recomendador ajuda a detectar clusters com alta utilização de CPU e memória e oferece recomendações para melhorar a configuração do cluster.
Como funciona o recomendador de clusters subprovisionados
Quando uma alta utilização de CPU e/ou memória for detectada, será exibida uma
recomendação para aumentar o tamanho da instância afetada no cluster
e reduzir o uso de CPU ou memória no pico. As recomendações são geradas diariamente.
Antes de começar
Antes de visualizar as recomendações e insights, faça o seguinte:
GET https://recommender.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/recommenders/google.alloydb.cluster.PerformanceRecommender/recommendations?filter=recommenderSubtype=INCREASE_PRIMARY_INSTANCE_SIZE
Substitua:
PROJECT_ID: o ID do projeto.
LOCATION: uma região em que seus clusters estão localizados, como us-central1.
Ver insights e recomendações detalhadas
É possível ver insights e recomendações detalhadas sobre clusters subprovisionados
que precisam de otimização usando o console Google Cloud ,
gcloud CLI ou a API Recommender.
Console
No console Google Cloud , acesse a página Clusters.
GET https://recommender.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/insightTypes/google.alloydb.cluster.PerformanceInsight/insights?filter=insightSubtype=INSIGHT_SUBTYPE
Substitua:
PROJECT_ID: o ID do projeto.
LOCATION: uma região em que seus clusters estão localizados, por exemplo, us-central1.
INSIGHT_SUBTYPE: define esse parâmetro com um dos seguintes valores:
HIGH_INSTANCE_CPU_UTILIZATION: exibe
insights sobre o uso da CPU.
HIGH_INSTANCE_MEMORY_UTILIZATION: exibe
insights sobre a memória.
A tabela a seguir lista os insights e as recomendações que o recomendador de cluster subprovisionado do AlloyDB para PostgreSQL pode gerar para ajudar a evitar gargalos de uso elevado da CPU e da memória e minimizar a probabilidade de eventos de falta de memória.
Os subtipos estão visíveis nos resultados da gcloud e da API.
Insights
Recomendações
Com base nas tendências atuais de utilização da CPU, o cluster é sinalizado como
tendo alto uso da CPU.
Subtipo: HIGH_INSTANCE_CPU_UTILIZATION
Aumente o tamanho da CPU ou reduza o uso dela.
Subtipo: INCREASE_PRIMARY_INSTANCE_SIZE
Com base nas tendências atuais de utilização de memória, o cluster é sinalizado como tendo alto uso da memória.
Subtipo: HIGH_INSTANCE_MEMORY_UTILIZATION
Aumente o tamanho da memória ou reduza o uso dela.
Subtipo: INCREASE_PRIMARY_INSTANCE_SIZE
Aplicar recomendações usando o console Google Cloud
Avalie as recomendações com atenção e faça o seguinte no
consoleGoogle Cloud para implementar a recomendação:
Clique em Editar no cluster.
Na janela Editar instância principal, mude para um tipo de máquina com mais vCPUs e mais memória.
Você não precisa dimensionar o cluster exatamente como recomendado. Use o bom senso e redimensione com base em como você pretende provisionar o cluster.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-03 UTC."],[[["\u003cp\u003eThe underprovisioned cluster recommender identifies clusters with high CPU and/or memory utilization and suggests optimizations to enhance performance.\u003c/p\u003e\n"],["\u003cp\u003eRecommendations to increase the instance size of underprovisioned clusters are generated daily and can be viewed after enabling the Recommender API and having the correct IAM roles.\u003c/p\u003e\n"],["\u003cp\u003eYou can list and apply underprovisioned cluster recommendations using the Google Cloud console, gcloud CLI, or the Recommender API.\u003c/p\u003e\n"],["\u003cp\u003eInsights on high CPU and memory utilization can be viewed via the console, CLI, or API, detailing the type of usage issue, such as \u003ccode\u003eHIGH_INSTANCE_CPU_UTILIZATION\u003c/code\u003e or \u003ccode\u003eHIGH_INSTANCE_MEMORY_UTILIZATION\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eImplementing the recommended instance size increase involves editing the cluster settings in the console, updating the primary instance to a machine type with more vCPUs and memory.\u003c/p\u003e\n"]]],[],null,["# Optimize underprovisioned clusters\n\nThis page describes how to optimize the performance of your AlloyDB for PostgreSQL clusters by using the\nunderprovisioned cluster [recommender](/recommender/docs/overview).\nThe recommender helps you detect clusters that have high CPU and memory\nutilization and provides recommendations for improving your cluster configuration.\n\nHow the underprovisioned cluster recommender works\n--------------------------------------------------\n\nWhen there is high CPU and or memory utilization detected, you see a\nrecommendation to increase the size of the affected instance in the cluster\nto reduce CPU or memory utilization at peak. Recommendations are generated daily.\n\nBefore you begin\n----------------\n\nBefore you can view recommendations and insights, do the following:\n\n- Ensure that you [enable the Recommender API](/recommender/docs/enabling).\n\n- To get the permissions to view and work with insights and recommendations,\n ensure that you have the required [Identity and Access Management (IAM) roles](/iam/docs/understanding-roles#cloud-alloydb-roles).\n\n \u003cbr /\u003e\n\n See [Grant access to other users](/alloydb/docs/user-grant-access) for more information.\n\nList underprovisioned cluster recommendations\n---------------------------------------------\n\nYou can list recommendations for underprovisioned clusters\nusing the Google Cloud console, `gcloud CLI`, or the Recommender API. \n\n### Console\n\nTo list recommendations about underprovisioned clusters, complete the following steps:\n\n1. In the Google Cloud console, go to the **Clusters** page.\n\n [Go to Clusters](https://console.cloud.google.com/alloydb/clusters)\n\n For more information, see\n [Find recommendations with Recommendation Hub](/recommender/docs/recommendation-hub/identify-configuration-problems).\n2. In the **Performance** card, click **Underprovisioned primary instance**.\n\n A list of clusters to which the **Underprovisioned primary instance** recommendation applies is displayed.\n\n### gcloud CLI\n\nTo list recommendations about underprovisioned clusters using gcloud CLI, run the [`gcloud recommender recommendations list`](/sdk/gcloud/reference/recommender/recommendations/list) command as follows: \n\n```\ngcloud recommender recommendations list \\\n--project=PROJECT_ID \\\n--location=LOCATION \\\n--recommender=google.alloydb.cluster.PerformanceRecommender \\\n--filter=recommenderSubtype=INCREASE_PRIMARY_INSTANCE_SIZE\n```\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your project ID.\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: A region where your clusters are located, such as `us-central1`.\n\n### API\n\nTo list recommendations for underprovisioned clusters using the [Recommendations API](/recommender/docs/using-api), call the\n[`recommendations.list`](/recommender/docs/reference/rest/v1/projects.locations.recommenders.recommendations/list)\nmethod as follows: \n\n```\nGET https://recommender.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/recommenders/google.alloydb.cluster.PerformanceRecommender/recommendations?filter=recommenderSubtype=INCREASE_PRIMARY_INSTANCE_SIZE\n```\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your project ID.\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: A region where your clusters are located, such as `us-central1`.\n\nView insights and detailed recommendations\n------------------------------------------\n\nYou can view insights and detailed recommendations about underprovisioned clusters\nthat require optimization using the Google Cloud console,\n`gcloud CLI`, or the Recommender API. \n\n### Console\n\n1. In the Google Cloud console, go to the **Clusters** page.\n\n [Go to Clusters](https://console.cloud.google.com/alloydb/clusters)\n2. Click the recommendation button for a cluster in the **Issues** column.\n\n The recommendation panel appears, which contains insights and detailed recommendations about an underprovisioned cluster.\n\n### gcloud CLI\n\nRun the [`gcloud recommender insights list`](/sdk/gcloud/reference/recommender/insights/list) command as follows: \n\n```\ngcloud recommender insights list \\\n--project=PROJECT_ID \\\n--location=LOCATION \\\n--insight-type=google.alloydb.cluster.PerformanceInsight\n--filter=insightSubtype=INSIGHT_SUBTYPE\n```\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your project ID.\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e : A region where your clusters are located, such as `us-central1`.\n- \u003cvar translate=\"no\"\u003eINSIGHT_SUBTYPE\u003c/var\u003e: set this parameter to one of the following:\n - `HIGH_INSTANCE_CPU_UTILIZATION`: display insights about CPU usage\n - `HIGH_INSTANCE_MEMORY_UTILIZATION`: display insights about memory\n\n### API\n\nCall the [`insights.list`](/recommender/docs/reference/rest/v1/projects.locations.insightTypes.insights/list) method as follows: \n\n```\nGET https://recommender.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/insightTypes/google.alloydb.cluster.PerformanceInsight/insights?filter=insightSubtype=INSIGHT_SUBTYPE\n```\n\nReplace the following:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your project ID.\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: A region where your clusters are located, for example, `us-central1`.\n- \u003cvar translate=\"no\"\u003eINSIGHT_SUBTYPE\u003c/var\u003e: set this parameter to one of the following:\n - `HIGH_INSTANCE_CPU_UTILIZATION`: display insights about CPU usage\n - `HIGH_INSTANCE_MEMORY_UTILIZATION`: display insights about memory\n\nThe following table lists the insights and recommendations that the AlloyDB for PostgreSQL\nunderprovisioned cluster recommender might generate to help you avoid bottlenecks from high CPU and memory\nusage and minimize the likelihood of out-of-memory events.\nThe subtypes are visible in the `gcloud` and API results.\n\nApply recommendations using the Google Cloud console\n----------------------------------------------------\n\nEvaluate the recommendations carefully and do the following in the\nGoogle Cloud console to implement the recommendation:\n\n1. Click **Edit** on your cluster.\n2. In the **Edit primary instance** window, switch to a machine type with more vCPUs and more memory.\n You don't need to rightsize the cluster exactly as recommended. Use your\n judgement and resize based on how you intend to provision the cluster.\n\n3. Click **Update instance**.\n\n | **Note:** You must carefully evaluate before you update the cluster. Applying recommendations might impact your pricing.\n\nWhat's next\n-----------\n\n- [Google Cloud recommenders](/recommender/docs/recommenders)"]]