This page describes how to use stored embeddings to generate indexes and query
embeddings using ScaNN
, IVF
, IVFFlat
, and HNSW
indexes with AlloyDB for PostgreSQL.
For more information about storing embedding, see
Store vector embeddings.
Before you begin
Before you can start creating indexes, you must complete the following prerequisites.
Embedding vectors are added to a table in your AlloyDB database.
The
vector
extension version0.5.0
or later that is based onpgvector
, extended by Google for AlloyDB is installed.CREATE EXTENSION IF NOT EXISTS vector;
To generate
ScaNN
indexes, install thealloydb_scann
extension in addition to thevector
extension.CREATE EXTENSION IF NOT EXISTS alloydb_scann;
Create an index
You can create one of the following index types for tables in your database.
Create a ScaNN
index
AlloyDB alloydb_scann
, a
PostgreSQL extension developed by Google that implements a highly
efficient nearest-neighbor index powered by the ScaNN
algorithm.
The ScaNN
index is a tree-based quantization index for approximate
nearest neighbor search. It provides lower index building time and smaller
memory footprint as compared to HNSW
. In addition, it provides faster QPS in
comparison to HNSW
based on the workload.
Two-level tree ScaNN
index
To apply a two-level tree index using the ScaNN algorithm to a column containing stored vector embeddings, run the following DDL query:
CREATE INDEX INDEX_NAME ON TABLE
USING scann (EMBEDDING_COLUMN DISTANCE_FUNCTION)
WITH (num_leaves=NUM_LEAVES_VALUE);
Replace the following:
INDEX_NAME
: the name of the index you want to create—for example,my-scann-index
. The index names are shared across your database. Ensure that each index name is unique to each table in your database.TABLE
: the table to add the index to.EMBEDDING_COLUMN
: a column that storesvector
data.DISTANCE_FUNCTION
: the distance function to use with this index. Choose one of the following:L2 distance:
l2
Dot product:
dot_product
Cosine distance:
cosine
NUM_LEAVES_VALUE
: the number of partitions to apply to this index. Set to any value between 1 to 1048576. For more information about how to decide this value, see Tune aScaNN
index.
Three-level tree ScaNN
index
To create a three-level tree index using the ScaNN algorithm to a column containing stored vector embeddings, run the following DDL query:
CREATE INDEX INDEX_NAME ON TABLE
USING scann (EMBEDDING_COLUMN DISTANCE_FUNCTION)
WITH (num_leaves=NUM_LEAVES_VALUE, max_num_levels = MAX_NUM_LEVELS);
Replace the following:
MAX_NUM_LEVELS
: the maximum number of levels of the K-means clustering tree. Set to1
(default) for two-level tree-based quantization and to2
for three-level tree-based quantization.
After you create the index, you can run nearest-neighbor search queries that make use of the index by following the instructions in Make a nearest-neighbor query with given text.
The index parameters must be set to strike a right balance between QPS and
recall. For more information about tuning the ScaNN
index, see Tune a ScaNN
index.
To create this index on an embedding column that uses the real[]
data type
instead of vector
, cast the column into the vector
data type:
CREATE INDEX INDEX_NAME ON TABLE
USING scann (CAST(EMBEDDING_COLUMN AS vector(DIMENSIONS)) DISTANCE_FUNCTION)
WITH (num_leaves=NUM_LEAVES_VALUE, max_num_levels = MAX_NUM_LEVELS);
Replace DIMENSIONS
with the dimensional width of the
embedding column. For more information about how to find the dimensions,
see the vector_dims
function in Vector
functions.
To view the indexing progress, use the pg_stat_progress_create_index
view:
SELECT * FROM pg_stat_progress_create_index;
The phase
column shows the current state of your index creation, and the
building index: tree training
phase disappears after the index is created.
To tune your index for a target recall and QPS balance, see Tune a ScaNN
index.
Analyze your indexed table
After you create the ScaNN
index, you must run the ANALYZE
command to update statistics about your data.
ANALYZE TABLE;
What's next
- Run vector similarity searches
- Tune vector query performance
- Vector index metrics
- Learn how to build a smart shopping assistant with AlloyDB, pgvector, and model endpoint management.