Trascrivere l'audio da un file video utilizzando Speech-to-Text


Questo tutorial mostra come trascrivere la traccia audio di un file video utilizzando Speech-to-Text.

I file audio possono provenire da molte fonti diverse. I dati audio possono provenire da un telefono (ad esempio un messaggio vocale) o dalla traccia audio inclusa in un file video.

Speech-to-Text può utilizzare uno dei diversi modelli di machine learning per trascrivere il file audio in modo da ottenere la migliore corrispondenza con la fonte originale dell'audio. Puoi ottenere risultati migliori dalla trascrizione vocale specificando la fonte dell'audio originale. In questo modo, Speech-to-Text può elaborare i file audio utilizzando un modello di machine learning addestrato per dati simili al tuo file audio.

Obiettivi

  • Invia una richiesta di trascrizione audio per un file video a Speech-to-Text.

Costi

In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:

  • Speech-to-Text

Per generare una stima dei costi in base all'utilizzo previsto, utilizza il Calcolatore prezzi. I nuovi utenti di Google Cloud potrebbero avere diritto a una prova gratuita.

Prima di iniziare

Questo tutorial ha diversi prerequisiti:

Prepara i dati audio

Prima di poter trascrivere l'audio di un video, devi estrarre i dati dal file video. Dopo aver estratto i dati audio, devi archiviarli in un bucket Cloud Storage o convertirli in codifica base64.

Estrai i dati audio

Puoi utilizzare qualsiasi strumento di conversione file che gestisce file audio e video, ad esempio FFmpeg.

Utilizza lo snippet di codice riportato di seguito per convertire un file video in un file audio utilizzando ffmpeg.

ffmpeg -i video-input-file audio-output-file

Memorizza o converti i dati audio

Puoi trascrivere un file audio archiviato sul tuo computer locale o in un bucket Cloud Storage.

Utilizza il seguente comando per caricare il file audio in un bucket Cloud Storage esistente utilizzando Google Cloud CLI.

gcloud storage cp audio-output-file storage-bucket-uri

Se utilizzi un file locale e prevedi di inviare una richiesta utilizzando lo curl strumento dalla riga di comando, devi prima convertire il file audio in dati codificati in base64.

Utilizza il seguente comando per convertire un file audio in un file di testo.

base64 audio-output-file -w 0 > audio-data-text

Invio di una richiesta di trascrizione

Utilizza il seguente codice per inviare una richiesta di trascrizione a Speech-to-Text.

Richiesta di file locale

Protocollo

Per informazioni dettagliate, consulta l'endpoint API speech:recognize.

Per eseguire il riconoscimento vocale sincrono, effettua una richiesta POST e fornisci il corpo della richiesta appropriato. Di seguito è riportato un esempio di richiesta POST mediante curl. L'esempio utilizza Google Cloud CLI per generare un token di accesso. Per istruzioni sull'installazione di gcloud CLI, consulta la guida rapida.

curl -s -H "Content-Type: application/json" \
    -H "Authorization: Bearer $(gcloud auth application-default print-access-token)" \
    https://speech.googleapis.com/v1/speech:recognize \
    --data '{
    "config": {
        "encoding": "LINEAR16",
        "sampleRateHertz": 16000,
        "languageCode": "en-US",
        "model": "video"
    },
    "audio": {
        "uri": "gs://cloud-samples-tests/speech/Google_Gnome.wav"
    }
}'

Per ulteriori informazioni sulla configurazione del corpo della richiesta, consulta la documentazione di riferimento di RecognitionConfig.

Se la richiesta riesce, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON:

{
  "results": [
    {
      "alternatives": [
        {
          "transcript": "OK Google stream stranger things from
            Netflix to my TV okay stranger things from
            Netflix playing on TV from the people that brought you
            Google home comes the next evolution of the smart home
            and it's just outside your window me Google know hi
            how can I help okay no what's the weather like outside
            the weather outside is sunny and 76 degrees he's right
            okay no turn on the hose I'm holding sure okay no I'm can
            I eat this lemon tree leaf yes what about this Daisy yes
            but I wouldn't recommend it but I could eat it okay
            Nomad milk to my shopping list I'm sorry that sounds like
            an indoor request I keep doing that sorry you do keep
            doing that okay no is this compost really we're all
            compost if you think about it pretty much everything is
            made up of organic matter and will return",
          "confidence": 0.9251011
        }
      ]
    }
  ]
}

Go

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Go.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


func modelSelection(w io.Writer) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	data, err := os.ReadFile("../testdata/Google_Gnome.wav")
	if err != nil {
		return fmt.Errorf("ReadFile: %w", err)
	}

	req := &speechpb.RecognizeRequest{
		Config: &speechpb.RecognitionConfig{
			Encoding:        speechpb.RecognitionConfig_LINEAR16,
			SampleRateHertz: 16000,
			LanguageCode:    "en-US",
			Model:           "video",
		},
		Audio: &speechpb.RecognitionAudio{
			AudioSource: &speechpb.RecognitionAudio_Content{Content: data},
		},
	}

	resp, err := client.Recognize(ctx, req)
	if err != nil {
		return fmt.Errorf("recognize: %w", err)
	}

	for i, result := range resp.Results {
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "Result %d\n", i+1)
		for j, alternative := range result.Alternatives {
			fmt.Fprintf(w, "Alternative %d: %s\n", j+1, alternative.Transcript)
		}
	}
	return nil
}

Java

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Java.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * Performs transcription of the given audio file synchronously with the selected model.
 *
 * @param fileName the path to a audio file to transcribe
 */
public static void transcribeModelSelection(String fileName) throws Exception {
  Path path = Paths.get(fileName);
  byte[] content = Files.readAllBytes(path);

  try (SpeechClient speech = SpeechClient.create()) {
    // Configure request with video media type
    RecognitionConfig recConfig =
        RecognitionConfig.newBuilder()
            // encoding may either be omitted or must match the value in the file header
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            // sample rate hertz may be either be omitted or must match the value in the file
            // header
            .setSampleRateHertz(16000)
            .setModel("video")
            .build();

    RecognitionAudio recognitionAudio =
        RecognitionAudio.newBuilder().setContent(ByteString.copyFrom(content)).build();

    RecognizeResponse recognizeResponse = speech.recognize(recConfig, recognitionAudio);
    // Just print the first result here.
    SpeechRecognitionResult result = recognizeResponse.getResultsList().get(0);
    // There can be several alternative transcripts for a given chunk of speech. Just use the
    // first (most likely) one here.
    SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
    System.out.printf("Transcript : %s\n", alternative.getTranscript());
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Node.js.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;
const fs = require('fs');

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const filename = 'Local path to audio file, e.g. /path/to/audio.raw';
// const model = 'Model to use, e.g. phone_call, video, default';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
  model: model,
};
const audio = {
  content: fs.readFileSync(filename).toString('base64'),
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file
const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log('Transcription: ', transcription);

Python

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Python.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import speech

# Instantiates a client
client = speech.SpeechClient()
# Reads a file as bytes
with open("resources/Google_Gnome.wav", "rb") as f:
    audio_content = f.read()

audio = speech.RecognitionAudio(content=audio_content)

config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=16000,
    language_code="en-US",
    model="video",  # Chosen model
)

response = client.recognize(config=config, audio=audio)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print(f"First alternative of result {i}")
    print(f"Transcript: {alternative.transcript}")

Linguaggi aggiuntivi

C#: segui le istruzioni di configurazione per C# riportate nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per .NET.

PHP: segui le istruzioni di configurazione di PHP nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per PHP.

Ruby: segui le istruzioni di configurazione di Ruby nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per Ruby.

Richiesta di file remoto

Go

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Go.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import (
	"context"
	"fmt"
	"io"
	"strings"

	speech "cloud.google.com/go/speech/apiv1"
	"cloud.google.com/go/speech/apiv1/speechpb"
)

// transcribe_model_selection_gcs Transcribes the given audio file asynchronously with
// the selected model.
func transcribe_model_selection_gcs(w io.Writer) error {
	ctx := context.Background()

	client, err := speech.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	audio := &speechpb.RecognitionAudio{
		AudioSource: &speechpb.RecognitionAudio_Uri{Uri: "gs://cloud-samples-tests/speech/Google_Gnome.wav"},
	}

	// The speech recognition model to use
	// See, https://cloud.google.com/speech-to-text/docs/speech-to-text-requests#select-model
	recognitionConfig := &speechpb.RecognitionConfig{
		Encoding:        speechpb.RecognitionConfig_LINEAR16,
		SampleRateHertz: 16000,
		LanguageCode:    "en-US",
		Model:           "video",
	}

	longRunningRecognizeRequest := &speechpb.LongRunningRecognizeRequest{
		Config: recognitionConfig,
		Audio:  audio,
	}

	operation, err := client.LongRunningRecognize(ctx, longRunningRecognizeRequest)
	if err != nil {
		return fmt.Errorf("error running recognize %w", err)
	}

	response, err := operation.Wait(ctx)
	if err != nil {
		return err
	}
	for i, result := range response.Results {
		alternative := result.Alternatives[0]
		fmt.Fprintf(w, "%s\n", strings.Repeat("-", 20))
		fmt.Fprintf(w, "First alternative of result %d", i)
		fmt.Fprintf(w, "Transcript: %s", alternative.Transcript)
	}
	return nil
}

Java

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Java.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * Performs transcription of the remote audio file asynchronously with the selected model.
 *
 * @param gcsUri the path to the remote audio file to transcribe.
 */
public static void transcribeModelSelectionGcs(String gcsUri) throws Exception {
  try (SpeechClient speech = SpeechClient.create()) {

    // Configure request with video media type
    RecognitionConfig config =
        RecognitionConfig.newBuilder()
            // encoding may either be omitted or must match the value in the file header
            .setEncoding(AudioEncoding.LINEAR16)
            .setLanguageCode("en-US")
            // sample rate hertz may be either be omitted or must match the value in the file
            // header
            .setSampleRateHertz(16000)
            .setModel("video")
            .build();

    RecognitionAudio audio = RecognitionAudio.newBuilder().setUri(gcsUri).build();

    // Use non-blocking call for getting file transcription
    OperationFuture<LongRunningRecognizeResponse, LongRunningRecognizeMetadata> response =
        speech.longRunningRecognizeAsync(config, audio);

    while (!response.isDone()) {
      System.out.println("Waiting for response...");
      Thread.sleep(10000);
    }

    List<SpeechRecognitionResult> results = response.get().getResultsList();

    // Just print the first result here.
    SpeechRecognitionResult result = results.get(0);
    // There can be several alternative transcripts for a given chunk of speech. Just use the
    // first (most likely) one here.
    SpeechRecognitionAlternative alternative = result.getAlternativesList().get(0);
    System.out.printf("Transcript : %s\n", alternative.getTranscript());
  }
}

Node.js

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Node.js.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

// Imports the Google Cloud client library for Beta API
/**
 * TODO(developer): Update client library import to use new
 * version of API when desired features become available
 */
const speech = require('@google-cloud/speech').v1p1beta1;

// Creates a client
const client = new speech.SpeechClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const gcsUri = 'gs://my-bucket/audio.raw';
// const model = 'Model to use, e.g. phone_call, video, default';
// const encoding = 'Encoding of the audio file, e.g. LINEAR16';
// const sampleRateHertz = 16000;
// const languageCode = 'BCP-47 language code, e.g. en-US';

const config = {
  encoding: encoding,
  sampleRateHertz: sampleRateHertz,
  languageCode: languageCode,
  model: model,
};
const audio = {
  uri: gcsUri,
};

const request = {
  config: config,
  audio: audio,
};

// Detects speech in the audio file.
const [response] = await client.recognize(request);
const transcription = response.results
  .map(result => result.alternatives[0].transcript)
  .join('\n');
console.log('Transcription: ', transcription);

Python

Per scoprire come installare e utilizzare la libreria client per Speech-to-Text, consulta Librerie client di Speech-to-Text. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Speech-to-Text Python.

Per autenticarti a Speech-to-Text, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import speech

client = speech.SpeechClient()

audio = speech.RecognitionAudio(
    uri="gs://cloud-samples-tests/speech/Google_Gnome.wav"
)

config = speech.RecognitionConfig(
    encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
    sample_rate_hertz=16000,
    language_code="en-US",
    model="video",  # Chosen model
)

operation = client.long_running_recognize(config=config, audio=audio)

print("Waiting for operation to complete...")
response = operation.result(timeout=90)

for i, result in enumerate(response.results):
    alternative = result.alternatives[0]
    print("-" * 20)
    print(f"First alternative of result {i}")
    print(f"Transcript: {alternative.transcript}")

Linguaggi aggiuntivi

C#: segui le istruzioni di configurazione per C# riportate nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per .NET.

PHP: segui le istruzioni di configurazione di PHP nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per PHP.

Ruby: segui le istruzioni di configurazione di Ruby nella pagina delle librerie client e poi consulta la documentazione di riferimento di Speech-to-Text per Ruby.

Esegui la pulizia

Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questo tutorial, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.

Elimina il progetto

Il modo più semplice per eliminare la fatturazione è eliminare il progetto che hai creato per il tutorial.

Per eliminare il progetto:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Elimina le istanze

Per eliminare un'istanza di Compute Engine:

  1. In the Google Cloud console, go to the VM instances page.

    Go to VM instances

  2. Select the checkbox for the instance that you want to delete.
  3. To delete the instance, click More actions, click Delete, and then follow the instructions.

Elimina le regole del firewall per la rete predefinita

Per eliminare una regola firewall:

  1. In the Google Cloud console, go to the Firewall page.

    Go to Firewall

  2. Select the checkbox for the firewall rule that you want to delete.
  3. To delete the firewall rule, click Delete.

Passaggi successivi

Provalo

Se non conosci Google Cloud, crea un account per valutare le prestazioni di Speech-to-Text in scenari reali. I nuovi clienti ricevono anche 300 $ di crediti gratuiti per l'esecuzione, il test e il deployment dei carichi di lavoro.

Prova Speech-to-Text gratuitamente