Cloud Storage to BigQuery template
Use the Dataproc Serverless Cloud Storage to BigQuery template to extract data from Cloud Storage to BigQuery.
Use the template
Run the template using the gcloud CLI or Dataproc API.
gcloud
Before using any of the command data below, make the following replacements:
- PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
- REGION: Required. Compute Engine region.
- TEMPLATE_VERSION: Required. Specify
latest
for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta
(visit gs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries
to list available template versions). - CLOUD_STORAGE_PATH: Required. Source Cloud Storage
path.
Example:
gs://dataproc-templates/hive_to_cloud_storage_output"
- FORMAT: Required. Input data format. Options:
avro
,parquet
,csv
, orjson
. Note: Ifavro
, you must add "file:///usr/lib/spark/connector/spark-avro.jar
" to thejars
gcloud CLI flag or API field.Example (the
file://
prefix references a Dataproc Serverless jar file):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - DATASET: Required. Destination BigQuery dataset.
- TABLE: Required. Destination BigQuery table.
- TEMP_BUCKET: Required. Temporary Cloud Storage bucket used for staging data before loading to BigQuery.
- SUBNET: Optional. If a subnet is not specified, the subnet
in the specified REGION in the
default
network is selected.Example:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into BigQuery. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
- SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
- PROPERTY and PROPERTY_VALUE:
Optional. Comma-separated list of
Spark property=
value
pairs. - LABEL and LABEL_VALUE:
Optional. Comma-separated list of
label
=value
pairs. - LOG_LEVEL: Optional. Level of logging. Can be one of
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
, orWARN
. Default:INFO
. -
KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed encryption key.
Example:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
Execute the following command:
Linux, macOS, or Cloud Shell
gcloud dataproc batches submit spark \ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate \ --version="1.2" \ --project="PROJECT_ID" \ --region="REGION" \ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" \ --subnet="SUBNET" \ --kms-key="KMS_KEY" \ --service-account="SERVICE_ACCOUNT" \ --properties="PROPERTY=PROPERTY_VALUE" \ --labels="LABEL=LABEL_VALUE" \ -- --template=GCSTOBIGQUERY \ --templateProperty log.level="LOG_LEVEL" \ --templateProperty project.id="PROJECT_ID" \ --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" \ --templateProperty gcs.bigquery.input.format="FORMAT" \ --templateProperty gcs.bigquery.output.dataset="DATASET" \ --templateProperty gcs.bigquery.output.table="TABLE" \ --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" \ --templateProperty gcs.bigquery.temp.table="TEMPVIEW" \ --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
Windows (PowerShell)
gcloud dataproc batches submit spark ` --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ` --version="1.2" ` --project="PROJECT_ID" ` --region="REGION" ` --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ` --subnet="SUBNET" ` --kms-key="KMS_KEY" ` --service-account="SERVICE_ACCOUNT" ` --properties="PROPERTY=PROPERTY_VALUE" ` --labels="LABEL=LABEL_VALUE" ` -- --template=GCSTOBIGQUERY ` --templateProperty log.level="LOG_LEVEL" ` --templateProperty project.id="PROJECT_ID" ` --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" ` --templateProperty gcs.bigquery.input.format="FORMAT" ` --templateProperty gcs.bigquery.output.dataset="DATASET" ` --templateProperty gcs.bigquery.output.table="TABLE" ` --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" ` --templateProperty gcs.bigquery.temp.table="TEMPVIEW" ` --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
Windows (cmd.exe)
gcloud dataproc batches submit spark ^ --class=com.google.cloud.dataproc.templates.main.DataProcTemplate ^ --version="1.2" ^ --project="PROJECT_ID" ^ --region="REGION" ^ --jars="gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ^ --subnet="SUBNET" ^ --kms-key="KMS_KEY" ^ --service-account="SERVICE_ACCOUNT" ^ --properties="PROPERTY=PROPERTY_VALUE" ^ --labels="LABEL=LABEL_VALUE" ^ -- --template=GCSTOBIGQUERY ^ --templateProperty log.level="LOG_LEVEL" ^ --templateProperty project.id="PROJECT_ID" ^ --templateProperty gcs.bigquery.input.location="CLOUD_STORAGE_PATH" ^ --templateProperty gcs.bigquery.input.format="FORMAT" ^ --templateProperty gcs.bigquery.output.dataset="DATASET" ^ --templateProperty gcs.bigquery.output.table="TABLE" ^ --templateProperty gcs.bigquery.temp.bucket.name="TEMP_BUCKET" ^ --templateProperty gcs.bigquery.temp.table="TEMPVIEW" ^ --templateProperty gcs.bigquery.temp.query="SQL_QUERY"
REST
Before using any of the request data, make the following replacements:
- PROJECT_ID: Required. Your Google Cloud project ID listed in the IAM Settings.
- REGION: Required. Compute Engine region.
- TEMPLATE_VERSION: Required. Specify
latest
for the latest template version, or the date of a specific version, for example,2023-03-17_v0.1.0-beta
(visit gs://dataproc-templates-binaries or rungcloud storage ls gs://dataproc-templates-binaries
to list available template versions). - CLOUD_STORAGE_PATH: Required. Source Cloud Storage
path.
Example:
gs://dataproc-templates/hive_to_cloud_storage_output"
- FORMAT: Required. Input data format. Options:
avro
,parquet
,csv
, orjson
. Note: Ifavro
, you must add "file:///usr/lib/spark/connector/spark-avro.jar
" to thejars
gcloud CLI flag or API field.Example (the
file://
prefix references a Dataproc Serverless jar file):--jars=file:///usr/lib/spark/connector/spark-avro.jar,
[, ... other jars] - DATASET: Required. Destination BigQuery dataset.
- TABLE: Required. Destination BigQuery table.
- TEMP_BUCKET: Required. Temporary Cloud Storage bucket used for staging data before loading to BigQuery.
- SUBNET: Optional. If a subnet is not specified, the subnet
in the specified REGION in the
default
network is selected.Example:
projects/PROJECT_ID/regions/REGION/subnetworks/SUBNET_NAME
- TEMPVIEW and SQL_QUERY: Optional. You can use these two optional parameters to apply a Spark SQL transformation while loading data into BigQuery. TEMPVIEW is the temporary view name, and SQL_QUERY is the query statement. TEMPVIEW and the table name in SQL_QUERY must match.
- SERVICE_ACCOUNT: Optional. If not provided, the default Compute Engine service account is used.
- PROPERTY and PROPERTY_VALUE:
Optional. Comma-separated list of
Spark property=
value
pairs. - LABEL and LABEL_VALUE:
Optional. Comma-separated list of
label
=value
pairs. - LOG_LEVEL: Optional. Level of logging. Can be one of
ALL
,DEBUG
,ERROR
,FATAL
,INFO
,OFF
,TRACE
, orWARN
. Default:INFO
. -
KMS_KEY: Optional. The Cloud Key Management Service key to use for encryption. If a key is not specified, data is encrypted at rest using a Google-owned and Google-managed encryption key.
Example:
projects/PROJECT_ID/regions/REGION/keyRings/KEY_RING_NAME/cryptoKeys/KEY_NAME
HTTP method and URL:
POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/locations/REGION/batches
Request JSON body:
{ "environmentConfig":{ "executionConfig":{ "subnetworkUri":"SUBNET", "kmsKey": "KMS_KEY", "serviceAccount": "SERVICE_ACCOUNT" } }, "labels": { "LABEL": "LABEL_VALUE" }, "runtimeConfig": { "version": "1.2", "properties": { "PROPERTY": "PROPERTY_VALUE" } }, "sparkBatch":{ "mainClass":"com.google.cloud.dataproc.templates.main.DataProcTemplate", "args":[ "--template", "GCSTOBIGQUERY", "--templateProperty","log.level=LOG_LEVEL", "--templateProperty","project.id=PROJECT_ID", "--templateProperty","gcs.bigquery.input.location=CLOUD_STORAGE_PATH", "--templateProperty","gcs.bigquery.input.format=FORMAT", "--templateProperty","gcs.bigquery.output.dataset=DATASET", "--templateProperty","gcs.bigquery.output.table=TABLE", "--templateProperty","gcs.bigquery.temp.bucket.name=TEMP_BUCKET", "--templateProperty","gcs.bigquery.temp.table=TEMPVIEW", "--templateProperty","gcs.bigquery.temp.query=SQL_QUERY" ], "jarFileUris":[ "file:///usr/lib/spark/connector/spark-avro.jar", "gs://dataproc-templates-binaries/TEMPLATE_VERSION/java/dataproc-templates.jar" ] } }
To send your request, expand one of these options:
You should receive a JSON response similar to the following:
{ "name": "projects/PROJECT_ID/regions/REGION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.dataproc.v1.BatchOperationMetadata", "batch": "projects/PROJECT_ID/locations/REGION/batches/BATCH_ID", "batchUuid": "de8af8d4-3599-4a7c-915c-798201ed1583", "createTime": "2023-02-24T03:31:03.440329Z", "operationType": "BATCH", "description": "Batch" } }