Workflows mit Clientbibliotheken ausführen

Sie können einen Workflow mit einer Clientbibliothek ausführen und die Ausführungsergebnisse aufrufen.

Weitere Informationen zum Installieren der Clientbibliotheken und zum Einrichten der Entwicklungsumgebung finden Sie in der Übersicht zu Workflow-Clientbibliotheken.

Hinweise

Von Ihrer Organisation definierte Sicherheitsbeschränkungen verhindern möglicherweise, dass die folgenden Schritte ausgeführt werden. Informationen zur Fehlerbehebung finden Sie unter Anwendungen in einer eingeschränkten Google Cloud-Umgebung entwickeln.

  1. Im folgenden Beispiel wird davon ausgegangen, dass Sie den Workflow myFirstWorkflow bereits bereitgestellt haben. Wenn nicht, stellen Sie es jetzt über die Google Cloud Console oder die Google Cloud CLI bereit.
  2. Laden Sie das Git-Quellcodeverwaltungstool herunter und installieren Sie es.

Beispielcode abrufen

  1. Klonen Sie das Repository der Beispiel-App auf Ihren lokalen Computer:

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

    Node.js

    git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

    Sie können auch das Beispiel als ZIP-Datei herunterladen und extrahieren.

  2. Wechseln Sie in das Verzeichnis, das den Workflows-Beispielcode enthält:

    Java

    cd java-docs-samples/workflows/cloud-client/

    Node.js

    cd nodejs-docs-samples/workflows/quickstart/

    Python

    cd python-docs-samples/workflows/cloud-client/

  3. Sehen Sie sich den Beispielcode an:

    Java

    // Imports the Google Cloud client library
    
    import com.google.cloud.workflows.executions.v1.CreateExecutionRequest;
    import com.google.cloud.workflows.executions.v1.Execution;
    import com.google.cloud.workflows.executions.v1.ExecutionsClient;
    import com.google.cloud.workflows.executions.v1.WorkflowName;
    import java.io.IOException;
    import java.util.concurrent.ExecutionException;
    
    public class WorkflowsQuickstart {
    
      private static final String PROJECT = System.getenv("GOOGLE_CLOUD_PROJECT");
      private static final String LOCATION = System.getenv().getOrDefault("LOCATION", "us-central1");
      private static final String WORKFLOW =
          System.getenv().getOrDefault("WORKFLOW", "myFirstWorkflow");
    
      public static void main(String... args)
          throws IOException, InterruptedException, ExecutionException {
        if (PROJECT == null) {
          throw new IllegalArgumentException(
              "Environment variable 'GOOGLE_CLOUD_PROJECT' is required to run this quickstart.");
        }
        workflowsQuickstart(PROJECT, LOCATION, WORKFLOW);
      }
    
      private static volatile boolean finished;
    
      public static void workflowsQuickstart(String projectId, String location, String workflow)
          throws IOException, InterruptedException, ExecutionException {
        // Initialize client that will be used to send requests. This client only needs
        // to be created once, and can be reused for multiple requests. After completing all of your
        // requests, call the "close" method on the client to safely clean up any remaining background
        // resources.
        try (ExecutionsClient executionsClient = ExecutionsClient.create()) {
          // Construct the fully qualified location path.
          WorkflowName parent = WorkflowName.of(projectId, location, workflow);
    
          // Creates the execution object.
          CreateExecutionRequest request =
              CreateExecutionRequest.newBuilder()
                  .setParent(parent.toString())
                  .setExecution(Execution.newBuilder().build())
                  .build();
          Execution response = executionsClient.createExecution(request);
    
          String executionName = response.getName();
          System.out.printf("Created execution: %s%n", executionName);
    
          long backoffTime = 0;
          long backoffDelay = 1_000; // Start wait with delay of 1,000 ms
          final long backoffTimeout = 10 * 60 * 1_000; // Time out at 10 minutes
          System.out.println("Poll for results...");
    
          // Wait for execution to finish, then print results.
          while (!finished && backoffTime < backoffTimeout) {
            Execution execution = executionsClient.getExecution(executionName);
            finished = execution.getState() != Execution.State.ACTIVE;
    
            // If we haven't seen the results yet, wait.
            if (!finished) {
              System.out.println("- Waiting for results");
              Thread.sleep(backoffDelay);
              backoffTime += backoffDelay;
              backoffDelay *= 2; // Double the delay to provide exponential backoff.
            } else {
              System.out.println("Execution finished with state: " + execution.getState().name());
              System.out.println("Execution results: " + execution.getResult());
            }
          }
        }
      }
    }

    Node.js

    const {ExecutionsClient} = require('@google-cloud/workflows');
    const client = new ExecutionsClient();
    /**
     * TODO(developer): Uncomment these variables before running the sample.
     */
    // const projectId = 'my-project';
    // const location = 'us-central1';
    // const workflow = 'myFirstWorkflow';
    // const searchTerm = '';
    
    /**
     * Executes a Workflow and waits for the results with exponential backoff.
     * @param {string} projectId The Google Cloud Project containing the workflow
     * @param {string} location The workflow location
     * @param {string} workflow The workflow name
     * @param {string} searchTerm Optional search term to pass to the Workflow as a runtime argument
     */
    async function executeWorkflow(projectId, location, workflow, searchTerm) {
      /**
       * Sleeps the process N number of milliseconds.
       * @param {Number} ms The number of milliseconds to sleep.
       */
      function sleep(ms) {
        return new Promise(resolve => {
          setTimeout(resolve, ms);
        });
      }
      const runtimeArgs = searchTerm ? {searchTerm: searchTerm} : {};
      // Execute workflow
      try {
        const createExecutionRes = await client.createExecution({
          parent: client.workflowPath(projectId, location, workflow),
          execution: {
            // Runtime arguments can be passed as a JSON string
            argument: JSON.stringify(runtimeArgs),
          },
        });
        const executionName = createExecutionRes[0].name;
        console.log(`Created execution: ${executionName}`);
    
        // Wait for execution to finish, then print results.
        let executionFinished = false;
        let backoffDelay = 1000; // Start wait with delay of 1,000 ms
        console.log('Poll every second for result...');
        while (!executionFinished) {
          const [execution] = await client.getExecution({
            name: executionName,
          });
          executionFinished = execution.state !== 'ACTIVE';
    
          // If we haven't seen the result yet, wait a second.
          if (!executionFinished) {
            console.log('- Waiting for results...');
            await sleep(backoffDelay);
            backoffDelay *= 2; // Double the delay to provide exponential backoff.
          } else {
            console.log(`Execution finished with state: ${execution.state}`);
            console.log(execution.result);
            return execution.result;
          }
        }
      } catch (e) {
        console.error(`Error executing workflow: ${e}`);
      }
    }
    
    executeWorkflow(projectId, location, workflowName, searchTerm).catch(err => {
      console.error(err.message);
      process.exitCode = 1;
    });
    

    Python

    import time
    
    from google.cloud import workflows_v1
    from google.cloud.workflows import executions_v1
    from google.cloud.workflows.executions_v1 import Execution
    from google.cloud.workflows.executions_v1.types import executions
    
    
    def execute_workflow(
        project: str, location: str = "us-central1", workflow: str = "myFirstWorkflow"
    ) -> Execution:
        """Execute a workflow and print the execution results.
    
        A workflow consists of a series of steps described using the Workflows syntax, and can be written in either YAML or JSON.
    
        Args:
            project: The Google Cloud project id which contains the workflow to execute.
            location: The location for the workflow
            workflow: The ID of the workflow to execute.
    
        Returns:
            The execution response.
        """
        # Set up API clients.
        execution_client = executions_v1.ExecutionsClient()
        workflows_client = workflows_v1.WorkflowsClient()
        # Construct the fully qualified location path.
        parent = workflows_client.workflow_path(project, location, workflow)
    
        # Execute the workflow.
        response = execution_client.create_execution(request={"parent": parent})
        print(f"Created execution: {response.name}")
    
        # Wait for execution to finish, then print results.
        execution_finished = False
        backoff_delay = 1  # Start wait with delay of 1 second
        print("Poll for result...")
        while not execution_finished:
            execution = execution_client.get_execution(request={"name": response.name})
            execution_finished = execution.state != executions.Execution.State.ACTIVE
    
            # If we haven't seen the result yet, wait a second.
            if not execution_finished:
                print("- Waiting for results...")
                time.sleep(backoff_delay)
                # Double the delay to provide exponential backoff.
                backoff_delay *= 2
            else:
                print(f"Execution finished with state: {execution.state.name}")
                print(f"Execution results: {execution.result}")
                return execution
    
    

Das Programm tut Folgendes:

  1. Richtet die Cloud-Clientbibliotheken für Workflows ein.
  2. Führt einen Workflow aus.
  3. Fragt die Ausführung des Workflows (mit exponentiellem Backoff) ab, bis die Ausführung beendet ist.
  4. Druckt die Ausführungsergebnisse.

Beispiel ausführen

  1. Installieren Sie zuerst die Abhängigkeiten, um das Beispiel auszuführen:

    Java

    mvn compile

    Node.js

    npm install

    Python

    pip3 install -r requirements.txt

  2. Führen Sie das Skript aus:

    Java

    GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME mvn compile exec:java -Dexec.mainClass=com.example.workflows.WorkflowsQuickstart

    Node.js

    node . PROJECT_ID CLOUD_REGION WORKFLOW_NAME

    Python

    GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME python3 main.py

    Dabei gilt:

    • PROJECT_ID: (erforderlich) Die Projekt-ID des Google Cloud-Projekts
    • CLOUD_REGION: Der Speicherort für den Workflow (Standardeinstellung: us-central1)
    • WORKFLOW_NAME: Die ID des Workflows (Standard: myFirstWorkflow)

    Die Ausgabe sieht in etwa so aus:

    Execution finished with state: SUCCEEDED
    ["Sunday","Sunday in the Park with George","Sunday shopping","Sunday Bloody Sunday","Sunday Times Golden Globe Race","Sunday All Stars","Sunday Night (South Korean TV series)","Sunday Silence","Sunday Without God","Sunday Independent (Ireland)"]
    

Daten in einer Ausführungsanfrage übergeben

Je nach Sprache der Clientbibliothek können Sie auch ein Laufzeitargument in einer Ausführungsanfrage übergeben.

Beispiel mit JavaScript:

// Execute workflow
try {
  const createExecutionRes = await client.createExecution({
    parent: client.workflowPath(projectId, location, workflow),
    execution: {
      argument: JSON.stringify({"searchTerm": "Friday"})
    }
});
const executionName = createExecutionRes[0].name;

Oder mit Java:

// Creates the execution object.
CreateExecutionRequest request =
    CreateExecutionRequest.newBuilder()
        .setParent(parent.toString())
        .setExecution(Execution.newBuilder().setArgument("{\"searchTerm\":\"Friday\"}").build())
        .build();

Weitere Informationen zum Übergeben von Laufzeitargumenten finden Sie unter Laufzeitargumente in einer Ausführungsanfrage übergeben.

Bereinigen

Mit den folgenden Schritten vermeiden Sie, dass Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen in Rechnung gestellt werden:

  1. Öffnen Sie in der Google Cloud Console die Seite Workflows.

    Zur Seite "Workflows"

  2. Klicken Sie in der Liste der Workflows auf einen Workflow, um die Seite Workflow-Details aufzurufen.

  3. Klicken Sie auf Löschen.

  4. Geben Sie den Namen des Workflows ein und klicken Sie dann auf Bestätigen.

Nächste Schritte