Deteksi SafeSearch mendeteksi konten vulgar seperti konten khusus dewasa atau
konten kekerasan dalam gambar. Fitur ini menggunakan lima kategori
(adult
, spoof
, medical
, violence
, and racy
) dan menampilkan kemungkinan bahwa masing-masing kategori
ada dalam gambar tertentu. Lihat halaman
SafeSearchAnnotation
untuk mengetahui detail kolom ini.
Permintaan deteksi SafeSearch
Siapkan project dan autentikasi Google Cloud Anda
Jika Anda belum membuat Google Cloud project, lakukan sekarang. Luaskan bagian ini untuk menampilkan petunjuk.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Jika Anda menggunakan penyedia identitas (IdP) eksternal, Anda harus login ke gcloud CLI dengan identitas gabungan Anda terlebih dahulu.
-
Untuk melakukan inisialisasi gcloud CLI, jalankan perintah berikut:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Jika Anda menggunakan penyedia identitas (IdP) eksternal, Anda harus login ke gcloud CLI dengan identitas gabungan Anda terlebih dahulu.
-
Untuk melakukan inisialisasi gcloud CLI, jalankan perintah berikut:
gcloud init
- BASE64_ENCODED_IMAGE: Representasi
base64 (string ASCII) dari data gambar biner Anda. String ini akan terlihat seperti
string berikut:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- PROJECT_ID: ID project Google Cloud Anda.
- CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar
yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut.
Contoh:
gs://my-storage-bucket/img/image1.png
- PROJECT_ID: ID project Google Cloud Anda.
Mendeteksi konten vulgar pada gambar lokal
Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar lokal.
Untuk permintaan REST, kirim konten file gambar sebagai string yang berenkode base64 dalam isi permintaan Anda.
Untuk gcloud
dan permintaan library klien, tentukan jalur ke image lokal dalam
permintaan Anda.
REST
Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:
Metode HTTP dan URL:
POST https://vision.googleapis.com/v1/images:annotate
Isi JSON permintaan:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "type": "SAFE_SEARCH_DETECTION" }, ] } ] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Anda akan menerima respons JSON yang sama seperti berikut ini:
{ "responses": [ { "safeSearchAnnotation": { "adult": "UNLIKELY", "spoof": "VERY_UNLIKELY", "medical": "VERY_UNLIKELY", "violence": "LIKELY", "racy": "POSSIBLE" } } ] }
Go
Sebelum mencoba sampel ini, ikuti petunjuk persiapanGo di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearch(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
props, err := client.DetectSafeSearch(ctx, image, nil)
if err != nil {
return err
}
fmt.Fprintln(w, "Safe Search properties:")
fmt.Fprintln(w, "Adult:", props.Adult)
fmt.Fprintln(w, "Medical:", props.Medical)
fmt.Fprintln(w, "Racy:", props.Racy)
fmt.Fprintln(w, "Spoofed:", props.Spoof)
fmt.Fprintln(w, "Violence:", props.Violence)
return nil
}
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectSafeSearch {
public static void detectSafeSearch() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectSafeSearch(filePath);
}
// Detects whether the specified image has features you would want to moderate.
public static void detectSafeSearch(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.SAFE_SEARCH_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
System.out.format(
"adult: %s%nmedical: %s%nspoofed: %s%nviolence: %s%nracy: %s%n",
annotation.getAdult(),
annotation.getMedical(),
annotation.getSpoof(),
annotation.getViolence(),
annotation.getRacy());
}
}
}
}
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
// Performs safe search detection on the local file
const [result] = await client.safeSearchDetection(fileName);
const detections = result.safeSearchAnnotation;
console.log('Safe search:');
console.log(`Adult: ${detections.adult}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Violence: ${detections.violence}`);
console.log(`Racy: ${detections.racy}`);
Python
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
def detect_safe_search(path):
"""Detects unsafe features in the file."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.safe_search_detection(image=image)
safe = response.safe_search_annotation
# Names of likelihood from google.cloud.vision.enums
likelihood_name = (
"UNKNOWN",
"VERY_UNLIKELY",
"UNLIKELY",
"POSSIBLE",
"LIKELY",
"VERY_LIKELY",
)
print("Safe search:")
print(f"adult: {likelihood_name[safe.adult]}")
print(f"medical: {likelihood_name[safe.medical]}")
print(f"spoofed: {likelihood_name[safe.spoof]}")
print(f"violence: {likelihood_name[safe.violence]}")
print(f"racy: {likelihood_name[safe.racy]}")
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Deteksi konten vulgar pada gambar jarak jauh
Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar jarak jauh yang terletak di Cloud Storage atau di Web. Untuk mengirim permintaan file jarak jauh, tentukan URL Web atau Cloud Storage URI file dalam isi permintaan.
REST
Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:
Metode HTTP dan URL:
POST https://vision.googleapis.com/v1/images:annotate
Isi JSON permintaan:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "SAFE_SEARCH_DETECTION" } ] } ] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Anda akan menerima respons JSON yang sama seperti berikut ini:
{ "responses": [ { "safeSearchAnnotation": { "adult": "UNLIKELY", "spoof": "VERY_UNLIKELY", "medical": "VERY_UNLIKELY", "violence": "LIKELY", "racy": "POSSIBLE" } } ] }
Go
Sebelum mencoba sampel ini, ikuti petunjuk persiapanGo di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// detectSafeSearch gets image properties from the Vision API for an image at the given file path.
func detectSafeSearchURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
props, err := client.DetectSafeSearch(ctx, image, nil)
if err != nil {
return err
}
fmt.Fprintln(w, "Safe Search properties:")
fmt.Fprintln(w, "Adult:", props.Adult)
fmt.Fprintln(w, "Medical:", props.Medical)
fmt.Fprintln(w, "Racy:", props.Racy)
fmt.Fprintln(w, "Spoofed:", props.Spoof)
fmt.Fprintln(w, "Violence:", props.Violence)
return nil
}
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Java API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.SafeSearchAnnotation;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectSafeSearchGcs {
public static void detectSafeSearchGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectSafeSearchGcs(filePath);
}
// Detects whether the specified image on Google Cloud Storage has features you would want to
// moderate.
public static void detectSafeSearchGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
System.out.format(
"adult: %s%nmedical: %s%nspoofed: %s%nviolence: %s%nracy: %s%n",
annotation.getAdult(),
annotation.getMedical(),
annotation.getSpoof(),
annotation.getViolence(),
annotation.getRacy());
}
}
}
}
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs safe search property detection on the remote file
const [result] = await client.safeSearchDetection(
`gs://${bucketName}/${fileName}`
);
const detections = result.safeSearchAnnotation;
console.log(`Adult: ${detections.adult}`);
console.log(`Spoof: ${detections.spoof}`);
console.log(`Medical: ${detections.medical}`);
console.log(`Violence: ${detections.violence}`);
Python
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
def detect_safe_search_uri(uri):
"""Detects unsafe features in the file located in Google Cloud Storage or
on the Web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.safe_search_detection(image=image)
safe = response.safe_search_annotation
# Names of likelihood from google.cloud.vision.enums
likelihood_name = (
"UNKNOWN",
"VERY_UNLIKELY",
"UNLIKELY",
"POSSIBLE",
"LIKELY",
"VERY_LIKELY",
)
print("Safe search:")
print(f"adult: {likelihood_name[safe.adult]}")
print(f"medical: {likelihood_name[safe.medical]}")
print(f"spoofed: {likelihood_name[safe.spoof]}")
print(f"violence: {likelihood_name[safe.violence]}")
print(f"racy: {likelihood_name[safe.racy]}")
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
gcloud
Untuk melakukan deteksi SafeSearch, gunakan
perintah gcloud ml vision detect-safe-search
seperti yang ditunjukkan pada contoh berikut:
gcloud ml vision detect-safe-search gs://my_bucket/input_file