Deteksi Wajah mendeteksi beberapa wajah dalam satu gambar beserta
atribut wajah utama yang terkait, seperti keadaan emosi atau wearing headwear
.
Pengenalan Wajah individu tertentu tidak didukung.
Coba sendiri
Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa Cloud Vision API dalam skenario dunia nyata. Pelanggan baru mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.
Coba Cloud Vision API gratisPermintaan deteksi wajah
Siapkan project dan autentikasi Google Cloud Anda
Jika Anda belum membuat Google Cloud project, lakukan sekarang. Luaskan bagian ini untuk menampilkan petunjuk.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Jika Anda menggunakan penyedia identitas (IdP) eksternal, Anda harus login ke gcloud CLI dengan identitas gabungan Anda terlebih dahulu.
-
Untuk melakukan inisialisasi gcloud CLI, jalankan perintah berikut:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
-
Install the Google Cloud CLI.
-
Jika Anda menggunakan penyedia identitas (IdP) eksternal, Anda harus login ke gcloud CLI dengan identitas gabungan Anda terlebih dahulu.
-
Untuk melakukan inisialisasi gcloud CLI, jalankan perintah berikut:
gcloud init
- BASE64_ENCODED_IMAGE: Representasi
base64 (string ASCII) dari data gambar biner Anda. String ini akan terlihat seperti
string berikut:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT: (Opsional) Nilai bilangan bulat dari hasil yang akan
ditampilkan. Jika Anda menghilangkan kolom
"maxResults"
dan nilainya, API akan menampilkan nilai default 10 hasil. Kolom ini tidak berlaku untuk jenis fitur berikut:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
, atauCROP_HINTS
. - PROJECT_ID: ID project Google Cloud Anda.
- CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar
yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut.
Contoh:
gs://cloud-samples-data/vision/face/faces.jpeg
- RESULTS_INT: (Opsional) Nilai bilangan bulat dari hasil yang akan
ditampilkan. Jika Anda menghilangkan kolom
"maxResults"
dan nilainya, API akan menampilkan nilai default 10 hasil. Kolom ini tidak berlaku untuk jenis fitur berikut:TEXT_DETECTION
,DOCUMENT_TEXT_DETECTION
, atauCROP_HINTS
. - PROJECT_ID: ID project Google Cloud Anda.
Mendeteksi Wajah di gambar lokal
Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar lokal.
Untuk permintaan REST, kirim konten file gambar sebagai string yang berenkode base64 dalam isi permintaan Anda.
Untuk gcloud
dan permintaan library klien, tentukan jalur ke image lokal dalam
permintaan Anda.
REST
Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:
Metode HTTP dan URL:
POST https://vision.googleapis.com/v1/images:annotate
Isi JSON permintaan:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "FACE_DETECTION" } ] } ] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK
dan
respons dalam format JSON.
Respons FACE_DETECTION
mencakup kotak pembatas untuk semua wajah yang terdeteksi, landmark
yang terdeteksi pada wajah (mata, hidung, mulut, dll.), serta rating kepercayaan diri untuk properti wajah dan
gambar (kegembiraan, kesedihan, kemarahan, keheranan, dll.).
Tanggapan
{ "responses": [ { "faceAnnotations": [ { "boundingPoly": { "vertices": [ { "x": 1077, "y": 157 }, { "x": 2146, "y": 157 }, { "x": 2146, "y": 1399 }, { "x": 1077, "y": 1399 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 1112, "y": 407 }, { "x": 1946, "y": 407 }, { "x": 1946, "y": 1270 }, { "x": 1112, "y": 1270 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 1368.748, "y": 739.0957, "z": 0.0024604797 } }, { "type": "RIGHT_EYE", "position": { "x": 1660.6105, "y": 751.5844, "z": -117.06496 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 1284.3208, "y": 666.61487, "z": 63.41506 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 1418.9249, "y": 671.49414, "z": -83.82396 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 1556.9579, "y": 672.2199, "z": -139.39935 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1771.4799, "y": 682.65845, "z": -131.66716 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 1479.6194, "y": 741.87305, "z": -114.84635 } }, { "type": "NOSE_TIP", "position": { "x": 1443.3151, "y": 917.5109, "z": -194.49301 } }, { "type": "UPPER_LIP", "position": { "x": 1466.7897, "y": 1025.3483, "z": -130.1202 } }, { "type": "LOWER_LIP", "position": { "x": 1467.2588, "y": 1147.0403, "z": -109.24505 } }, { "type": "MOUTH_LEFT", "position": { "x": 1376.8649, "y": 1066.0856, "z": -6.8136826 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1652, "y": 1079.3108, "z": -106.93649 } }, { "type": "MOUTH_CENTER", "position": { "x": 1485.5554, "y": 1087.2388, "z": -110.68126 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1571.9475, "y": 944.9213, "z": -124.11806 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 1395.2339, "y": 938.12787, "z": -58.072197 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 1468.4205, "y": 968.8732, "z": -132.09975 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 1357.8658, "y": 711.2427, "z": -14.618992 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 1423.6936, "y": 750.4164, "z": -23.540215 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1360.5627, "y": 762.87415, "z": -1.2607727 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 1313.72, "y": 739.443, "z": 50.216393 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1661.6622, "y": 718.6839, "z": -134.17404 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1730.0901, "y": 763.57104, "z": -116.365845 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1660.8823, "y": 777.3474, "z": -120.8635 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 1590.8903, "y": 753.5044, "z": -91.84842 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1345.7522, "y": 640.18243, "z": -27.887913 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1660.5848, "y": 648.36145, "z": -153.73691 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 1274.1006, "y": 826.2645, "z": 422.6642 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 2014.8041, "y": 908.56537, "z": 149.61232 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 1476.2395, "y": 669.9625, "z": -120.59111 } }, { "type": "CHIN_GNATHION", "position": { "x": 1477.3256, "y": 1269.3269, "z": -67.748795 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 1336.8848, "y": 1096.2242, "z": 286.73004 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1863.2197, "y": 1128.6213, "z": 68.90431 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 1317.8549, "y": 940.8025, "z": 50.863163 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1733.4912, "y": 964.073, "z": -112.43947 } } ], "rollAngle": 1.5912293, "panAngle": -22.01964, "tiltAngle": -1.4997566, "detectionConfidence": 0.9310801, "landmarkingConfidence": 0.5775582, "joyLikelihood": "VERY_LIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "VERY_UNLIKELY", "headwearLikelihood": "POSSIBLE" }, { "boundingPoly": { "vertices": [ { "x": 144, "y": 1273 }, { "x": 793, "y": 1273 }, { "x": 793, "y": 1844 }, { "x": 144, "y": 1844 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 181, "y": 1373 }, { "x": 742, "y": 1373 }, { "x": 742, "y": 1844 }, { "x": 181, "y": 1844 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 356.13745, "y": 1635.7034, "z": 0.0045757294 } }, { "type": "RIGHT_EYE", "position": { "x": 557.07324, "y": 1601.1769, "z": -10.258446 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 284.70563, "y": 1599.5238, "z": 28.755493 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 397.47183, "y": 1574.1455, "z": -28.716581 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 484.00983, "y": 1559.5669, "z": -33.509003 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 607.31726, "y": 1551.2396, "z": 11.0225525 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 447.86597, "y": 1603.2458, "z": -40.69277 } }, { "type": "NOSE_TIP", "position": { "x": 463.15356, "y": 1705.7849, "z": -114.36831 } }, { "type": "UPPER_LIP", "position": { "x": 475.02646, "y": 1779.54, "z": -85.219086 } }, { "type": "LOWER_LIP", "position": { "x": 483.2983, "y": 1844.4594, "z": -83.812 } }, { "type": "MOUTH_LEFT", "position": { "x": 391.11206, "y": 1824.9432, "z": -34.578503 } }, { "type": "MOUTH_RIGHT", "position": { "x": 559.85266, "y": 1797.929, "z": -44.700863 } }, { "type": "MOUTH_CENTER", "position": { "x": 478.21106, "y": 1807.5089, "z": -76.46759 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 522.9539, "y": 1717.8636, "z": -51.489075 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 414.95767, "y": 1739.2955, "z": -46.75015 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 468.7361, "y": 1739.5958, "z": -78.64168 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 352.39365, "y": 1618.0576, "z": -7.2005444 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 395.81454, "y": 1629.9379, "z": -2.4021797 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 357.511, "y": 1649.6553, "z": -4.4735374 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 316.1426, "y": 1645.2771, "z": 18.701395 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 553.78973, "y": 1582.3448, "z": -17.07942 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 596.6489, "y": 1599.1897, "z": 4.014868 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 558.60706, "y": 1615.964, "z": -15.077105 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 514.8054, "y": 1605.6407, "z": -7.929638 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 336.4973, "y": 1567.6466, "z": -7.853897 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 542.3708, "y": 1536.191, "z": -19.405855 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 231.38948, "y": 1749.3823, "z": 221.4534 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 712.5644, "y": 1670.4897, "z": 199.4929 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 439.35938, "y": 1561.1454, "z": -36.451645 } }, { "type": "CHIN_GNATHION", "position": { "x": 501.61096, "y": 1942.0133, "z": -75.04764 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 304.9834, "y": 1892.5361, "z": 114.12407 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 684.92535, "y": 1824.337, "z": 96.13425 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 334.5645, "y": 1764.659, "z": -2.0755844 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 609.5919, "y": 1719.6847, "z": -16.861538 } } ], "rollAngle": -8.514851, "panAngle": -3.096844, "tiltAngle": 9.26052, "detectionConfidence": 0.5463216, "landmarkingConfidence": 0.55711126, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "UNLIKELY", "headwearLikelihood": "VERY_UNLIKELY" }, { "boundingPoly": { "vertices": [ { "x": 785, "y": 167 }, { "x": 1100, "y": 167 }, { "x": 1100, "y": 534 }, { "x": 785, "y": 534 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 834, "y": 220 }, { "x": 1101, "y": 220 }, { "x": 1101, "y": 506 }, { "x": 834, "y": 506 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 933.74615, "y": 351.82394, "z": -0.00068986416 } }, { "type": "RIGHT_EYE", "position": { "x": 1005.8836, "y": 329.02396, "z": 43.38338 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 901.93494, "y": 333.3503, "z": -9.714935 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 957.4015, "y": 319.9436, "z": -6.8983736 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 987.50134, "y": 308.46817, "z": 13.108145 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1031.5519, "y": 298.8843, "z": 65.60683 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 979.4568, "y": 336.0551, "z": 3.8077774 } }, { "type": "NOSE_TIP", "position": { "x": 1003.45795, "y": 398.80377, "z": -17.351936 } }, { "type": "UPPER_LIP", "position": { "x": 1000.16614, "y": 432.11664, "z": 5.2740355 } }, { "type": "LOWER_LIP", "position": { "x": 1004.0378, "y": 456.92422, "z": 13.545323 } }, { "type": "MOUTH_LEFT", "position": { "x": 961.922, "y": 448.64325, "z": 11.117096 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1025.2979, "y": 432.70157, "z": 47.89795 } }, { "type": "MOUTH_CENTER", "position": { "x": 1002.51434, "y": 443.3482, "z": 13.021965 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1015.5027, "y": 402.8421, "z": 28.03568 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 969.764, "y": 413.05563, "z": 3.1156778 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 997.8564, "y": 416.98083, "z": 3.3404813 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 930.542, "y": 343.17078, "z": -6.9020395 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 950.7726, "y": 348.11346, "z": 9.216144 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 933.6862, "y": 359.50848, "z": -1.3347243 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 914.83966, "y": 356.1447, "z": -1.4299142 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1006.59766, "y": 319.50406, "z": 38.31219 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1021.45886, "y": 327.68784, "z": 61.100002 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1009.46686, "y": 336.0832, "z": 43.87975 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 991.17535, "y": 331.97632, "z": 34.4881 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 928.40436, "y": 317.13898, "z": -14.411907 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1008.5887, "y": 294.364, "z": 32.917953 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 835.18915, "y": 395.7093, "z": 81.31065 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 1024.4136, "y": 360.64178, "z": 182.02446 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 975.5221, "y": 315.06647, "z": 0.31154716 } }, { "type": "CHIN_GNATHION", "position": { "x": 1010.74097, "y": 503.23572, "z": 29.966637 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 891.86237, "y": 466.7829, "z": 58.84553 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1031.9008, "y": 428.13455, "z": 145.42484 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 929.4197, "y": 418.09122, "z": 4.574672 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1033.7278, "y": 390.5432, "z": 65.6329 } } ], "rollAngle": -12.077273, "panAngle": 27.194477, "tiltAngle": -5.252778, "detectionConfidence": 0.38126788, "landmarkingConfidence": 0.040030442, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "LIKELY", "blurredLikelihood": "VERY_LIKELY", "headwearLikelihood": "VERY_UNLIKELY" } ] } ] }
Go
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFaces(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
defer client.Close()
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
annotations, err := client.DetectFaces(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No faces found.")
} else {
fmt.Fprintln(w, "Faces:")
for i, annotation := range annotations {
fmt.Fprintln(w, " Face", i)
fmt.Fprintln(w, " Anger:", annotation.AngerLikelihood)
fmt.Fprintln(w, " Joy:", annotation.JoyLikelihood)
fmt.Fprintln(w, " Surprise:", annotation.SurpriseLikelihood)
}
}
return nil
}
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.FaceAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectFaces {
public static void detectFaces() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectFaces(filePath);
}
// Detects faces in the specified local image.
public static void detectFaces(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.FACE_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
System.out.format(
"anger: %s%njoy: %s%nsurprise: %s%nposition: %s",
annotation.getAngerLikelihood(),
annotation.getJoyLikelihood(),
annotation.getSurpriseLikelihood(),
annotation.getBoundingPoly());
}
}
}
}
}
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
async function detectFaces() {
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
const [result] = await client.faceDetection(fileName);
const faces = result.faceAnnotations;
console.log('Faces:');
faces.forEach((face, i) => {
console.log(` Face #${i + 1}:`);
console.log(` Joy: ${face.joyLikelihood}`);
console.log(` Anger: ${face.angerLikelihood}`);
console.log(` Sorrow: ${face.sorrowLikelihood}`);
console.log(` Surprise: ${face.surpriseLikelihood}`);
});
}
detectFaces();
Python
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
def detect_faces(path):
"""Detects faces in an image."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.face_detection(image=image)
faces = response.face_annotations
# Names of likelihood from google.cloud.vision.enums
likelihood_name = (
"UNKNOWN",
"VERY_UNLIKELY",
"UNLIKELY",
"POSSIBLE",
"LIKELY",
"VERY_LIKELY",
)
print("Faces:")
for face in faces:
print(f"anger: {likelihood_name[face.anger_likelihood]}")
print(f"joy: {likelihood_name[face.joy_likelihood]}")
print(f"surprise: {likelihood_name[face.surprise_likelihood]}")
vertices = [
f"({vertex.x},{vertex.y})" for vertex in face.bounding_poly.vertices
]
print("face bounds: {}".format(",".join(vertices)))
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Bahasa tambahan
C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.
PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Vision untuk PHP.
Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien lalu kunjungi Dokumentasi referensi Vision untuk Ruby.
Mendeteksi Wajah dalam gambar jarak jauh
Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar jarak jauh yang terletak di Cloud Storage atau di Web. Untuk mengirim permintaan file jarak jauh, tentukan URL Web atau Cloud Storage URI file dalam isi permintaan.
REST
Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:
Metode HTTP dan URL:
POST https://vision.googleapis.com/v1/images:annotate
Isi JSON permintaan:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "FACE_DETECTION" } ] } ] }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK
dan
respons dalam format JSON.
Respons FACE_DETECTION
mencakup kotak pembatas untuk semua wajah yang terdeteksi, landmark
yang terdeteksi pada wajah (mata, hidung, mulut, dll.), serta rating kepercayaan diri untuk properti wajah dan
gambar (kegembiraan, kesedihan, kemarahan, keheranan, dll.).
Tanggapan
{ "responses": [ { "faceAnnotations": [ { "boundingPoly": { "vertices": [ { "x": 1077, "y": 157 }, { "x": 2146, "y": 157 }, { "x": 2146, "y": 1399 }, { "x": 1077, "y": 1399 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 1112, "y": 407 }, { "x": 1946, "y": 407 }, { "x": 1946, "y": 1270 }, { "x": 1112, "y": 1270 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 1368.748, "y": 739.0957, "z": 0.0024604797 } }, { "type": "RIGHT_EYE", "position": { "x": 1660.6105, "y": 751.5844, "z": -117.06496 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 1284.3208, "y": 666.61487, "z": 63.41506 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 1418.9249, "y": 671.49414, "z": -83.82396 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 1556.9579, "y": 672.2199, "z": -139.39935 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1771.4799, "y": 682.65845, "z": -131.66716 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 1479.6194, "y": 741.87305, "z": -114.84635 } }, { "type": "NOSE_TIP", "position": { "x": 1443.3151, "y": 917.5109, "z": -194.49301 } }, { "type": "UPPER_LIP", "position": { "x": 1466.7897, "y": 1025.3483, "z": -130.1202 } }, { "type": "LOWER_LIP", "position": { "x": 1467.2588, "y": 1147.0403, "z": -109.24505 } }, { "type": "MOUTH_LEFT", "position": { "x": 1376.8649, "y": 1066.0856, "z": -6.8136826 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1652, "y": 1079.3108, "z": -106.93649 } }, { "type": "MOUTH_CENTER", "position": { "x": 1485.5554, "y": 1087.2388, "z": -110.68126 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1571.9475, "y": 944.9213, "z": -124.11806 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 1395.2339, "y": 938.12787, "z": -58.072197 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 1468.4205, "y": 968.8732, "z": -132.09975 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 1357.8658, "y": 711.2427, "z": -14.618992 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 1423.6936, "y": 750.4164, "z": -23.540215 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1360.5627, "y": 762.87415, "z": -1.2607727 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 1313.72, "y": 739.443, "z": 50.216393 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1661.6622, "y": 718.6839, "z": -134.17404 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1730.0901, "y": 763.57104, "z": -116.365845 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1660.8823, "y": 777.3474, "z": -120.8635 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 1590.8903, "y": 753.5044, "z": -91.84842 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1345.7522, "y": 640.18243, "z": -27.887913 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1660.5848, "y": 648.36145, "z": -153.73691 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 1274.1006, "y": 826.2645, "z": 422.6642 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 2014.8041, "y": 908.56537, "z": 149.61232 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 1476.2395, "y": 669.9625, "z": -120.59111 } }, { "type": "CHIN_GNATHION", "position": { "x": 1477.3256, "y": 1269.3269, "z": -67.748795 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 1336.8848, "y": 1096.2242, "z": 286.73004 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1863.2197, "y": 1128.6213, "z": 68.90431 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 1317.8549, "y": 940.8025, "z": 50.863163 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1733.4912, "y": 964.073, "z": -112.43947 } } ], "rollAngle": 1.5912293, "panAngle": -22.01964, "tiltAngle": -1.4997566, "detectionConfidence": 0.9310801, "landmarkingConfidence": 0.5775582, "joyLikelihood": "VERY_LIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "VERY_UNLIKELY", "headwearLikelihood": "POSSIBLE" }, { "boundingPoly": { "vertices": [ { "x": 144, "y": 1273 }, { "x": 793, "y": 1273 }, { "x": 793, "y": 1844 }, { "x": 144, "y": 1844 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 181, "y": 1373 }, { "x": 742, "y": 1373 }, { "x": 742, "y": 1844 }, { "x": 181, "y": 1844 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 356.13745, "y": 1635.7034, "z": 0.0045757294 } }, { "type": "RIGHT_EYE", "position": { "x": 557.07324, "y": 1601.1769, "z": -10.258446 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 284.70563, "y": 1599.5238, "z": 28.755493 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 397.47183, "y": 1574.1455, "z": -28.716581 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 484.00983, "y": 1559.5669, "z": -33.509003 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 607.31726, "y": 1551.2396, "z": 11.0225525 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 447.86597, "y": 1603.2458, "z": -40.69277 } }, { "type": "NOSE_TIP", "position": { "x": 463.15356, "y": 1705.7849, "z": -114.36831 } }, { "type": "UPPER_LIP", "position": { "x": 475.02646, "y": 1779.54, "z": -85.219086 } }, { "type": "LOWER_LIP", "position": { "x": 483.2983, "y": 1844.4594, "z": -83.812 } }, { "type": "MOUTH_LEFT", "position": { "x": 391.11206, "y": 1824.9432, "z": -34.578503 } }, { "type": "MOUTH_RIGHT", "position": { "x": 559.85266, "y": 1797.929, "z": -44.700863 } }, { "type": "MOUTH_CENTER", "position": { "x": 478.21106, "y": 1807.5089, "z": -76.46759 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 522.9539, "y": 1717.8636, "z": -51.489075 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 414.95767, "y": 1739.2955, "z": -46.75015 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 468.7361, "y": 1739.5958, "z": -78.64168 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 352.39365, "y": 1618.0576, "z": -7.2005444 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 395.81454, "y": 1629.9379, "z": -2.4021797 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 357.511, "y": 1649.6553, "z": -4.4735374 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 316.1426, "y": 1645.2771, "z": 18.701395 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 553.78973, "y": 1582.3448, "z": -17.07942 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 596.6489, "y": 1599.1897, "z": 4.014868 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 558.60706, "y": 1615.964, "z": -15.077105 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 514.8054, "y": 1605.6407, "z": -7.929638 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 336.4973, "y": 1567.6466, "z": -7.853897 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 542.3708, "y": 1536.191, "z": -19.405855 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 231.38948, "y": 1749.3823, "z": 221.4534 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 712.5644, "y": 1670.4897, "z": 199.4929 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 439.35938, "y": 1561.1454, "z": -36.451645 } }, { "type": "CHIN_GNATHION", "position": { "x": 501.61096, "y": 1942.0133, "z": -75.04764 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 304.9834, "y": 1892.5361, "z": 114.12407 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 684.92535, "y": 1824.337, "z": 96.13425 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 334.5645, "y": 1764.659, "z": -2.0755844 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 609.5919, "y": 1719.6847, "z": -16.861538 } } ], "rollAngle": -8.514851, "panAngle": -3.096844, "tiltAngle": 9.26052, "detectionConfidence": 0.5463216, "landmarkingConfidence": 0.55711126, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "VERY_UNLIKELY", "blurredLikelihood": "UNLIKELY", "headwearLikelihood": "VERY_UNLIKELY" }, { "boundingPoly": { "vertices": [ { "x": 785, "y": 167 }, { "x": 1100, "y": 167 }, { "x": 1100, "y": 534 }, { "x": 785, "y": 534 } ] }, "fdBoundingPoly": { "vertices": [ { "x": 834, "y": 220 }, { "x": 1101, "y": 220 }, { "x": 1101, "y": 506 }, { "x": 834, "y": 506 } ] }, "landmarks": [ { "type": "LEFT_EYE", "position": { "x": 933.74615, "y": 351.82394, "z": -0.00068986416 } }, { "type": "RIGHT_EYE", "position": { "x": 1005.8836, "y": 329.02396, "z": 43.38338 } }, { "type": "LEFT_OF_LEFT_EYEBROW", "position": { "x": 901.93494, "y": 333.3503, "z": -9.714935 } }, { "type": "RIGHT_OF_LEFT_EYEBROW", "position": { "x": 957.4015, "y": 319.9436, "z": -6.8983736 } }, { "type": "LEFT_OF_RIGHT_EYEBROW", "position": { "x": 987.50134, "y": 308.46817, "z": 13.108145 } }, { "type": "RIGHT_OF_RIGHT_EYEBROW", "position": { "x": 1031.5519, "y": 298.8843, "z": 65.60683 } }, { "type": "MIDPOINT_BETWEEN_EYES", "position": { "x": 979.4568, "y": 336.0551, "z": 3.8077774 } }, { "type": "NOSE_TIP", "position": { "x": 1003.45795, "y": 398.80377, "z": -17.351936 } }, { "type": "UPPER_LIP", "position": { "x": 1000.16614, "y": 432.11664, "z": 5.2740355 } }, { "type": "LOWER_LIP", "position": { "x": 1004.0378, "y": 456.92422, "z": 13.545323 } }, { "type": "MOUTH_LEFT", "position": { "x": 961.922, "y": 448.64325, "z": 11.117096 } }, { "type": "MOUTH_RIGHT", "position": { "x": 1025.2979, "y": 432.70157, "z": 47.89795 } }, { "type": "MOUTH_CENTER", "position": { "x": 1002.51434, "y": 443.3482, "z": 13.021965 } }, { "type": "NOSE_BOTTOM_RIGHT", "position": { "x": 1015.5027, "y": 402.8421, "z": 28.03568 } }, { "type": "NOSE_BOTTOM_LEFT", "position": { "x": 969.764, "y": 413.05563, "z": 3.1156778 } }, { "type": "NOSE_BOTTOM_CENTER", "position": { "x": 997.8564, "y": 416.98083, "z": 3.3404813 } }, { "type": "LEFT_EYE_TOP_BOUNDARY", "position": { "x": 930.542, "y": 343.17078, "z": -6.9020395 } }, { "type": "LEFT_EYE_RIGHT_CORNER", "position": { "x": 950.7726, "y": 348.11346, "z": 9.216144 } }, { "type": "LEFT_EYE_BOTTOM_BOUNDARY", "position": { "x": 933.6862, "y": 359.50848, "z": -1.3347243 } }, { "type": "LEFT_EYE_LEFT_CORNER", "position": { "x": 914.83966, "y": 356.1447, "z": -1.4299142 } }, { "type": "RIGHT_EYE_TOP_BOUNDARY", "position": { "x": 1006.59766, "y": 319.50406, "z": 38.31219 } }, { "type": "RIGHT_EYE_RIGHT_CORNER", "position": { "x": 1021.45886, "y": 327.68784, "z": 61.100002 } }, { "type": "RIGHT_EYE_BOTTOM_BOUNDARY", "position": { "x": 1009.46686, "y": 336.0832, "z": 43.87975 } }, { "type": "RIGHT_EYE_LEFT_CORNER", "position": { "x": 991.17535, "y": 331.97632, "z": 34.4881 } }, { "type": "LEFT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 928.40436, "y": 317.13898, "z": -14.411907 } }, { "type": "RIGHT_EYEBROW_UPPER_MIDPOINT", "position": { "x": 1008.5887, "y": 294.364, "z": 32.917953 } }, { "type": "LEFT_EAR_TRAGION", "position": { "x": 835.18915, "y": 395.7093, "z": 81.31065 } }, { "type": "RIGHT_EAR_TRAGION", "position": { "x": 1024.4136, "y": 360.64178, "z": 182.02446 } }, { "type": "FOREHEAD_GLABELLA", "position": { "x": 975.5221, "y": 315.06647, "z": 0.31154716 } }, { "type": "CHIN_GNATHION", "position": { "x": 1010.74097, "y": 503.23572, "z": 29.966637 } }, { "type": "CHIN_LEFT_GONION", "position": { "x": 891.86237, "y": 466.7829, "z": 58.84553 } }, { "type": "CHIN_RIGHT_GONION", "position": { "x": 1031.9008, "y": 428.13455, "z": 145.42484 } }, { "type": "LEFT_CHEEK_CENTER", "position": { "x": 929.4197, "y": 418.09122, "z": 4.574672 } }, { "type": "RIGHT_CHEEK_CENTER", "position": { "x": 1033.7278, "y": 390.5432, "z": 65.6329 } } ], "rollAngle": -12.077273, "panAngle": 27.194477, "tiltAngle": -5.252778, "detectionConfidence": 0.38126788, "landmarkingConfidence": 0.040030442, "joyLikelihood": "VERY_UNLIKELY", "sorrowLikelihood": "VERY_UNLIKELY", "angerLikelihood": "VERY_UNLIKELY", "surpriseLikelihood": "VERY_UNLIKELY", "underExposedLikelihood": "LIKELY", "blurredLikelihood": "VERY_LIKELY", "headwearLikelihood": "VERY_UNLIKELY" } ] } ] }
Go
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFacesURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
annotations, err := client.DetectFaces(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No faces found.")
} else {
fmt.Fprintln(w, "Faces:")
for i, annotation := range annotations {
fmt.Fprintln(w, " Face", i)
fmt.Fprintln(w, " Anger:", annotation.AngerLikelihood)
fmt.Fprintln(w, " Joy:", annotation.JoyLikelihood)
fmt.Fprintln(w, " Surprise:", annotation.SurpriseLikelihood)
}
}
return nil
}
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.FaceAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectFacesGcs {
public static void detectFacesGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectFacesGcs(filePath);
}
// Detects faces in the specified remote image on Google Cloud Storage.
public static void detectFacesGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.FACE_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
System.out.format(
"anger: %s%njoy: %s%nsurprise: %s%nposition: %s",
annotation.getAngerLikelihood(),
annotation.getJoyLikelihood(),
annotation.getSurpriseLikelihood(),
annotation.getBoundingPoly());
}
}
}
}
}
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs face detection on the gcs file
const [result] = await client.faceDetection(`gs://${bucketName}/${fileName}`);
const faces = result.faceAnnotations;
console.log('Faces:');
faces.forEach((face, i) => {
console.log(` Face #${i + 1}:`);
console.log(` Joy: ${face.joyLikelihood}`);
console.log(` Anger: ${face.angerLikelihood}`);
console.log(` Sorrow: ${face.sorrowLikelihood}`);
console.log(` Surprise: ${face.surpriseLikelihood}`);
});
Python
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.
Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
def detect_faces_uri(uri):
"""Detects faces in the file located in Google Cloud Storage or the web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.face_detection(image=image)
faces = response.face_annotations
# Names of likelihood from google.cloud.vision.enums
likelihood_name = (
"UNKNOWN",
"VERY_UNLIKELY",
"UNLIKELY",
"POSSIBLE",
"LIKELY",
"VERY_LIKELY",
)
print("Faces:")
for face in faces:
print(f"anger: {likelihood_name[face.anger_likelihood]}")
print(f"joy: {likelihood_name[face.joy_likelihood]}")
print(f"surprise: {likelihood_name[face.surprise_likelihood]}")
vertices = [
f"({vertex.x},{vertex.y})" for vertex in face.bounding_poly.vertices
]
print("face bounds: {}".format(",".join(vertices)))
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
gcloud
Untuk melakukan deteksi wajah, gunakan
perintah gcloud ml vision detect-faces
seperti yang ditunjukkan pada contoh berikut:
gcloud ml vision detect-faces gs://cloud-samples-data/vision/face/faces.jpeg
Bahasa tambahan
C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.
PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Vision untuk PHP.
Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien lalu kunjungi Dokumentasi referensi Vision untuk Ruby.
Cobalah
Coba deteksi wajah di bawah ini. Anda dapat menggunakan
gambar yang sudah ditentukan (gs://cloud-samples-data/vision/face/faces.jpeg
) atau
menentukan gambar Anda sendiri sebagai gantinya. Kirim permintaan dengan memilih
Jalankan.
Isi permintaan:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "FACE_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/face/faces.jpeg" } } } ] }