Vertex AI ti consente di testare i prompt utilizzando Vertex AI Studio nella console Google Cloud, l'API Vertex AI e l'SDK Vertex AI per Python. Questa pagina spiega come testare i prompt di testo utilizzando una di queste interfacce.
Per scoprire di più sulla progettazione di prompt per il testo, consulta Progettare prompt di testo.
Testare i prompt di testo
Per testare i prompt di testo, scegli uno dei seguenti metodi.
REST
Per testare un prompt di testo utilizzando l'API Vertex AI, invia una richiesta POST all'endpoint del modello del publisher.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- PROJECT_ID: il tuo ID progetto.
- PROMPT: un prompt è una richiesta in linguaggio naturale presentata a un modello linguistico per ricevere una risposta. I prompt possono contenere domande, istruzioni, informazioni contestuali, esempi e testo da completare o proseguire dal modello. (Non aggiungere virgolette al prompt qui).
- TEMPERATURE:
la temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicati
topP
etopK
. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Con una temperatura pari a0
viene sempre selezionato il token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è comunque possibile una piccola variazione.Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.
- MAX_OUTPUT_TOKENS:
numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.
Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.
- TOP_P:
Top-P cambia il modo in cui il modello seleziona i token per l'output. I token vengono selezionati dal più probabile (vedi Top-K) al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Ad esempio, se i token A, B e C hanno una probabilità di
0,3, 0,2 e 0,1 e il valore di top-P è
0.5
, il modello seleziona A o B come token successivo utilizzando la temperatura ed esclude C come candidato.Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali.
- TOP_K:
Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a
1
indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a3
indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.Per ogni fase di selezione dei token, vengono campionati i token Top-K con le probabilità più elevate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.
Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali.
Metodo HTTP e URL:
POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict
Corpo JSON della richiesta:
{ "instances": [ { "prompt": "PROMPT"} ], "parameters": { "temperature": TEMPERATURE, "maxOutputTokens": MAX_OUTPUT_TOKENS, "topP": TOP_P, "topK": TOP_K } }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-bison:predict" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente.
Comando curl di esempio per il testo di bison
MODEL_ID="text-bison"
PROJECT_ID=PROJECT_ID
curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/us-central1/publishers/google/models/${MODEL_ID}:predict -d \
$'{
"instances": [
{ "prompt": "Give me ten interview questions for the role of program manager." }
],
"parameters": {
"temperature": 0.2,
"maxOutputTokens": 256,
"topK": 40,
"topP": 0.95
}
}'
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Go
Prima di provare questo esempio, segui le istruzioni di configurazione Go riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Go di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
C#
Prima di provare questo esempio, segui le istruzioni di configurazione C# riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API C# di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Ruby
Prima di provare questo esempio, segui le istruzioni di configurazione Ruby riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Ruby di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Console
Per testare un prompt di testo utilizzando Vertex AI Studio nella console Google Cloud, svolgi i seguenti passaggi:
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Vertex AI Studio.
- Fai clic sulla scheda Inizia.
- Fai clic su Prompt di testo.
Seleziona il metodo per inserire il prompt:
- Il formato libero è consigliato per i prompt zero-shot o per copiare e incollare i prompt few-shot.
- L'opzione Strutturato è consigliata per la progettazione di prompt con pochi esempi in Vertex AI Studio.
In formato libero
Inserisci il prompt nel campo di testo Prompt.
Strutturati
Il metodo strutturato per l'inserimento dei prompt separa i componenti di un prompt in diversi campi:
- Contesto: inserisci le istruzioni per l'attività che vuoi che venga eseguita dal modello e includi eventuali informazioni contestuali a cui il modello deve fare riferimento.
- Esempi: per i prompt few-shot, aggiungi esempi di input-output che mostrino i pattern di comportamento da imitare per il modello. L'aggiunta di un prefisso per input e output di esempio è facoltativa. Se scegli di aggiungere prefissi, questi devono essere coerenti in tutti gli esempi.
- Test: nel campo Input, inserisci l'input della richiesta per la quale vuoi ricevere una risposta. L'aggiunta di un prefisso per l'input e l'output del test è facoltativa. Se gli esempi hanno prefissi, il test deve avere gli stessi prefissi.
Configura il modello e i parametri:
- Modello: seleziona un modello
text-bison
ogemini-1.0-pro
. Temperatura: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per la temperatura.
La temperatura viene utilizzata per il campionamento durante la generazione della risposta, che si verifica quando vengono applicatitopP
etopK
. La temperatura controlla il grado di casualità nella selezione dei token. Le temperature più basse sono ideali per prompt che richiedono risposte meno aperte o creative, mentre le temperature più alte possono portare a risultati più diversificati o creativi. Con una temperatura pari a0
viene sempre selezionato il token con la probabilità più alta. In questo caso, le risposte per un determinato prompt sono per lo più deterministiche, ma è comunque possibile una piccola variazione.Se il modello restituisce una risposta troppo generica, troppo breve o fornisce una risposta di riserva, prova ad aumentare la temperatura.
Limite di token: utilizza il cursore o la casella di testo per inserire un valore per il limite di output massimo.
Numero massimo di token che possono essere generati nella risposta. Un token equivale a circa quattro caratteri. 100 token corrispondono a circa 60-80 parole.Specifica un valore più basso per risposte più brevi e un valore più alto per risposte potenzialmente più lunghe.
Top-K: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-K.
Top-K cambia il modo in cui il modello seleziona i token per l'output. Un top-K pari a1
indica che il token successivo selezionato è il più probabile tra tutti i token nel vocabolario del modello (chiamato anche decodifica greedy). Un top-K pari a3
indica invece che il token successivo viene selezionato tra i tre token più probabili utilizzando la temperatura.Per ogni fase di selezione dei token, vengono campionati i token Top-K con le probabilità più elevate. Quindi i token vengono ulteriormente filtrati in base a Top-P e il token finale viene selezionato utilizzando il campionamento con temperatura.
Specifica un valore più basso per risposte meno casuali e un valore più alto per risposte più casuali.
- Top-P: utilizza il dispositivo di scorrimento o la casella di testo per inserire un valore per il top-P.
I token vengono selezionati dal più probabile al meno probabile finché la somma delle loro probabilità non corrisponde al valore di Top-P. Per ridurre al minimo la variabilità dei risultati,
imposta Top-P su
0
.
- Modello: seleziona un modello
- Fai clic su Invia.
- (Facoltativo) Per salvare il prompt in I miei prompt, fai clic su Salva.
- (Facoltativo) Per ottenere il codice Python o un comando curl per il tuo prompt, fai clic su Visualizza codice.
Riprodurre in streaming la risposta dal modello di testo
Per visualizzare richieste e risposte di codice campione che utilizzano l'API REST, consulta Esempi di utilizzo dell'API REST.
Per visualizzare richieste e risposte di codice campione che utilizzano l'SDK Vertex AI per Python, consulta Esempi di utilizzo dell'SDK Vertex AI per Python.
Passaggi successivi
- Scopri come inviare richieste di prompt di Gemini Chat.
- Scopri come testare i prompt di chat.
- Scopri come ottimizzare un modello di base.
- Scopri le best practice per l'AI responsabile e i filtri di sicurezza di Vertex AI.