API de incorporaciones multimodales

La API de incorporaciones multimodales genera vectores según la entrada que proporcionas, que puede incluir una combinación de datos de imagen, texto y video. Los vectores de incorporación se pueden usar para tareas posteriores como la clasificación de imágenes o la moderación de contenido de video.

Para obtener más información conceptual, consulta Incorporaciones multimodales.

Modelos compatibles:

Modelo Código
Incorporaciones para multimodales multimodalembedding@001

Ejemplo de sintaxis

Sintaxis para enviar una solicitud a la API de incorporaciones multimodales.

curl

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \

https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:predict \
-d '{
"instances": [
  ...
],
}'

Python

from vertexai.vision_models import MultiModalEmbeddingModel

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding")
model.get_embeddings(...)

Lista de parámetros

Consulta ejemplos para obtener detalles sobre la implementación.

Cuerpo de la solicitud

{
  "instances": [
    {
      "text": string,
      "image": {
        // Union field can be only one of the following:
        "bytesBase64Encoded": string,
        "gcsUri": string,
        // End of list of possible types for union field.
        "mimeType": string
      },
      "video": {
        // Union field can be only one of the following:
        "bytesBase64Encoded": string,
        "gcsUri": string,
        // End of list of possible types for union field.
        "videoSegmentConfig": {
          "startOffsetSec": integer,
          "endOffsetSec": integer,
          "intervalSec": integer
        }
      },
      "parameters": {
        "dimension": integer
      }
    }
  ]
}
Parámetros

image

Opcional: Image

La imagen que se usará para generar las incorporaciones.

text

Opcional: String

El texto para generar incorporaciones.

video

Opcional: Video

El segmento del video que se generará las incorporaciones.

dimension

Opcional: Int

La dimensión de la incorporación, incluida en la respuesta. Solo se aplica a la entrada de imagen y texto. Valores aceptados: 128, 256, 512 o 1408

Imagen

Parámetros

bytesBase64Encoded

Opcional: String

Bytes de imagen codificados en una string base64. Debe ser bytesBase64Encoded o gcsUri.

gcsUri

Opcional. String

La ubicación de Cloud Storage de la imagen para realizar la incorporación. Puede ser bytesBase64Encoded o gcsUri.

mimeType

Opcional. String

El tipo de MIME del contenido de la imagen. Valores admitidos: image/jpeg y image/png.

Video

Parámetros

bytesBase64Encoded

Opcional: String

Bytes de video codificados en una string base64. Puede ser bytesBase64Encoded o gcsUri.

gcsUri

Opcional: String

La ubicación de Cloud Storage del video en el que se realizará la incorporación. Puede ser bytesBase64Encoded o gcsUri.

videoSegmentConfig

Opcional: VideoSegmentConfig

La configuración del segmento de video

VideoSegmentConfig
Parámetros

startOffsetSec

Opcional: Int

Es el desplazamiento inicial del segmento de video en segundos. Si no se especifica, se calcula con max(0, endOffsetSec - 120).

endOffsetSec

Opcional: Int

Es el desplazamiento final del segmento de video en segundos. Si no se especifica, se calcula con min(video length, startOffSec + 120). Si se especifican startOffSec y endOffSec, endOffsetSec se ajusta a min(startOffsetSec+120, endOffsetSec).

intervalSec

Opcional. Int

El intervalo del video en el que se generará la inserción. El valor mínimo de interval_sec es 4. Si el intervalo es inferior a 4, se muestra una InvalidArgumentError. No hay limitaciones en el valor máximo del intervalo. Sin embargo, si el intervalo es mayor que min(video length, 120s), se verá afectada la calidad de las incorporaciones generadas. Valor predeterminado: 16.

Cuerpo de la respuesta

{
  "predictions": [
    {
      "textEmbedding": [
        float,
        // array of 128, 256, 512, or 1408 float values
        float
      ],
      "imageEmbedding": [
        float,
        // array of 128, 256, 512, or 1408 float values
        float
      ],
      "videoEmbeddings": [
        {
          "startOffsetSec": integer,
          "endOffsetSec": integer,
          "embedding": [
            float,
            // array of 1408 float values
            float
          ]
        }
      ]
    }
  ],
  "deployedModelId": string
}
Elemento de la respuesta Descripción
imageEmbedding Lista de números de punto flotante en las dimensiones 128, 256, 512 o 1,408.
textEmbedding Lista de números de punto flotante en las dimensiones 128, 256, 512 o 1,408.
videoEmbeddings Lista de números de punto flotante en las dimensiones 1,408 con la hora de inicio y finalización (en segundos) del segmento de video para el que se generan las incorporaciones.

Ejemplos

Caso de uso básico

Genera incorporaciones a partir de imágenes

Usa el siguiente ejemplo para generar incorporaciones para una imagen.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: La región del proyecto. Por ejemplo, us-central1, europe-west2 o asia-northeast3. Para obtener una lista de las regiones disponibles, consulta IA generativa en ubicaciones de Vertex AI.
  • PROJECT_ID: El ID del proyecto de Google Cloud.
  • TEXT: El texto de destino para el que se obtendrán las incorporaciones. Por ejemplo:a cat
  • B64_ENCODED_IMG: la imagen de destino para la que se obtendrán incorporaciones. La imagen debe especificarse como una cadena de bytes codificada en base64.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict

Cuerpo JSON de la solicitud:

{
  "instances": [
    {
      "text": "TEXT",
      "image": {
        "bytesBase64Encoded": "B64_ENCODED_IMG"
      }
    }
  ]
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
La incorporación que muestra el modelo es un vector de número de punto flotante de 1,408. La siguiente muestra de respuesta se acorta por razones de espacio.
{
  "predictions": [
    {
      "textEmbedding": [
        0.010477379,
        -0.00399621,
        0.00576670747,
        [...]
        -0.00823613815,
        -0.0169572588,
        -0.00472954148
      ],
      "imageEmbedding": [
        0.00262696808,
        -0.00198890246,
        0.0152047109,
        -0.0103145819,
        [...]
        0.0324628279,
        0.0284924973,
        0.011650892,
        -0.00452344026
      ]
    }
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

import vertexai
from vertexai.vision_models import Image, MultiModalEmbeddingModel

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
)

embeddings = model.get_embeddings(
    image=image,
    contextual_text="Colosseum",
    dimension=1408,
)
print(f"Image Embedding: {embeddings.image_embedding}")
print(f"Text Embedding: {embeddings.text_embedding}")
# Example response:
# Image Embedding: [-0.0123147098, 0.0727171078, ...]
# Text Embedding: [0.00230263756, 0.0278981831, ...]

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const bastImagePath = "YOUR_BASED_IMAGE_PATH"
// const textPrompt = 'YOUR_TEXT_PROMPT';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'multimodalembedding@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictImageFromImageAndText() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  const fs = require('fs');
  const imageFile = fs.readFileSync(baseImagePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const prompt = {
    text: textPrompt,
    image: {
      bytesBase64Encoded: encodedImage,
    },
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    sampleCount: 1,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get image embedding response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

await predictImageFromImageAndText();

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1beta1.EndpointName;
import com.google.cloud.aiplatform.v1beta1.PredictResponse;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceSettings;
import com.google.gson.Gson;
import com.google.gson.JsonObject;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Base64;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class PredictImageFromImageAndTextSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";
    String textPrompt = "YOUR_TEXT_PROMPT";
    String baseImagePath = "YOUR_BASE_IMAGE_PATH";

    // Learn how to use text prompts to update an image:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/image/edit-images
    Map<String, Object> parameters = new HashMap<String, Object>();
    parameters.put("sampleCount", 1);

    String location = "us-central1";
    String publisher = "google";
    String model = "multimodalembedding@001";

    predictImageFromImageAndText(
        project, location, publisher, model, textPrompt, baseImagePath, parameters);
  }

  // Update images using text prompts
  public static void predictImageFromImageAndText(
      String project,
      String location,
      String publisher,
      String model,
      String textPrompt,
      String baseImagePath,
      Map<String, Object> parameters)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    final PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      // Convert the image to Base64
      byte[] imageData = Base64.getEncoder().encode(Files.readAllBytes(Paths.get(baseImagePath)));
      String encodedImage = new String(imageData, StandardCharsets.UTF_8);

      JsonObject jsonInstance = new JsonObject();
      jsonInstance.addProperty("text", textPrompt);
      JsonObject jsonImage = new JsonObject();
      jsonImage.addProperty("bytesBase64Encoded", encodedImage);
      jsonInstance.add("image", jsonImage);

      Value instanceValue = stringToValue(jsonInstance.toString());
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue);

      Gson gson = new Gson();
      String gsonString = gson.toJson(parameters);
      Value parameterValue = stringToValue(gsonString);

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.format("\tPrediction: %s\n", prediction);
      }
    }
  }

  // Convert a Json string to a protobuf.Value
  static Value stringToValue(String value) throws InvalidProtocolBufferException {
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(value, builder);
    return builder.build();
  }
}

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateForTextAndImage shows how to use the multimodal model to generate embeddings for
// text and image inputs.
func generateForTextAndImage(w io.Writer, project, location string) error {
	// location = "us-central1"
	ctx := context.Background()
	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instance, err := structpb.NewValue(map[string]any{
		"image": map[string]any{
			// Image input can be provided either as a Google Cloud Storage URI or as
			// base64-encoded bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png",
		},
		"text": "Colosseum",
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances: []*structpb.Value{instance},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		ImageEmbeddings []float32 `json:"imageEmbedding"`
		TextEmbeddings  []float32 `json:"textEmbedding"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal JSON: %w", err)
	}

	imageEmbedding := instanceEmbeddings.ImageEmbeddings
	textEmbedding := instanceEmbeddings.TextEmbeddings

	fmt.Fprintf(w, "Text embedding (length=%d): %v\n", len(textEmbedding), textEmbedding)
	fmt.Fprintf(w, "Image embedding (length=%d): %v\n", len(imageEmbedding), imageEmbedding)
	// Example response:
	// Text embedding (length=1408): [0.0023026613 0.027898183 -0.011858357 ... ]
	// Image embedding (length=1408): [-0.012314269 0.07271844 0.00020170923 ... ]

	return nil
}

Genera incorporaciones a partir de video

Usa el siguiente ejemplo para obtener incorporaciones para contenido de video.

REST

En el siguiente ejemplo, se usa un video ubicado en Cloud Storage. También puedes usar el campo video.bytesBase64Encoded para proporcionar una representación de string codificada en base64 del video.

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: La región del proyecto. Por ejemplo, us-central1, europe-west2 o asia-northeast3. Para obtener una lista de las regiones disponibles, consulta IA generativa en ubicaciones de Vertex AI.
  • PROJECT_ID: El ID del proyecto de Google Cloud.
  • VIDEO_URI: Es el URI de Cloud Storage del video objetivo del que deseas obtener las incorporaciones. Por ejemplo, gs://my-bucket/embeddings/supermarket-video.mp4

    También puedes proporcionar el video como una cadena de bytes codificada en Base64:

    [...]
    "video": {
      "bytesBase64Encoded": "B64_ENCODED_VIDEO"
    }
    [...]
    
  • videoSegmentConfig (START_SECOND, END_SECOND, INTERVAL_SECONDS). Opcional. Los segmentos de video específicos (en segundos) para los que se generan las incorporaciones.

    Por ejemplo:

    [...]
    "videoSegmentConfig": {
      "startOffsetSec": 10,
      "endOffsetSec": 60,
      "intervalSec": 10
    }
    [...]

    El uso de esta configuración especifica los datos de video de 10 a 60 segundos y genera incorporaciones para los siguientes intervalos de video de 10 segundos: [10, 20), [20, 30), [30, 40), [40, 50), [50, 60]. Este intervalo de video ("intervalSec": 10) se encuentra en el modo de incorporación de video Standard, y se cobra al usuario la tarifa del modo Standard.

    Si omites videoSegmentConfig, el servicio usa los siguientes valores predeterminados: "videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 120, "intervalSec": 16 }. Este intervalo de video ("intervalSec": 16) se encuentra en el modo de incorporación de video Essential, y se le cobra al usuario la tarifa del modo Essential.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict

Cuerpo JSON de la solicitud:

{
  "instances": [
    {
      "video": {
        "gcsUri": "VIDEO_URI",
        "videoSegmentConfig": {
          "startOffsetSec": START_SECOND,
          "endOffsetSec": END_SECOND,
          "intervalSec": INTERVAL_SECONDS
        }
      }
    }
  ]
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
La incorporación que muestra el modelo es un vector de número de punto flotante de 1,408. Las siguientes respuestas de muestra se acortan para el espacio.

Respuesta (7 segundos de video, sin videoSegmentConfig especificada):

{
  "predictions": [
    {
      "videoEmbeddings": [
        {
          "endOffsetSec": 7,
          "embedding": [
            -0.0045467657,
            0.0258095954,
            0.0146885719,
            0.00945400633,
            [...]
            -0.0023291884,
            -0.00493789,
            0.00975185353,
            0.0168156829
          ],
          "startOffsetSec": 0
        }
      ]
    }
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Respuesta (video de 59 segundos con la siguiente configuración de segmento de video: "videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 60, "intervalSec": 10 }):

{
  "predictions": [
    {
      "videoEmbeddings": [
        {
          "endOffsetSec": 10,
          "startOffsetSec": 0,
          "embedding": [
            -0.00683252793,
            0.0390476175,
            [...]
            0.00657121744,
            0.013023301
          ]
        },
        {
          "startOffsetSec": 10,
          "endOffsetSec": 20,
          "embedding": [
            -0.0104404651,
            0.0357737206,
            [...]
            0.00509833824,
            0.0131902946
          ]
        },
        {
          "startOffsetSec": 20,
          "embedding": [
            -0.0113538112,
            0.0305239167,
            [...]
            -0.00195809244,
            0.00941874553
          ],
          "endOffsetSec": 30
        },
        {
          "embedding": [
            -0.00299320649,
            0.0322436653,
            [...]
            -0.00993082579,
            0.00968887936
          ],
          "startOffsetSec": 30,
          "endOffsetSec": 40
        },
        {
          "endOffsetSec": 50,
          "startOffsetSec": 40,
          "embedding": [
            -0.00591270532,
            0.0368893594,
            [...]
            -0.00219071587,
            0.0042470959
          ]
        },
        {
          "embedding": [
            -0.00458270218,
            0.0368121453,
            [...]
            -0.00317760976,
            0.00595594104
          ],
          "endOffsetSec": 59,
          "startOffsetSec": 50
        }
      ]
    }
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

import vertexai

from vertexai.vision_models import MultiModalEmbeddingModel, Video
from vertexai.vision_models import VideoSegmentConfig

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")

embeddings = model.get_embeddings(
    video=Video.load_from_file(
        "gs://cloud-samples-data/vertex-ai-vision/highway_vehicles.mp4"
    ),
    video_segment_config=VideoSegmentConfig(end_offset_sec=1),
)

# Video Embeddings are segmented based on the video_segment_config.
print("Video Embeddings:")
for video_embedding in embeddings.video_embeddings:
    print(
        f"Video Segment: {video_embedding.start_offset_sec} - {video_embedding.end_offset_sec}"
    )
    print(f"Embedding: {video_embedding.embedding}")

# Example response:
# Video Embeddings:
# Video Segment: 0.0 - 1.0
# Embedding: [-0.0206376351, 0.0123456789, ...]

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateForVideo shows how to use the multimodal model to generate embeddings for video input.
func generateForVideo(w io.Writer, project, location string) error {
	// location = "us-central1"

	// The default context timeout may be not enough to process a video input.
	ctx, cancel := context.WithTimeout(context.Background(), 15*time.Second)
	defer cancel()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instances, err := structpb.NewValue(map[string]any{
		"video": map[string]any{
			// Video input can be provided either as a Google Cloud Storage URI or as base64-encoded
			// bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/vertex-ai-vision/highway_vehicles.mp4",
			"videoSegmentConfig": map[string]any{
				"startOffsetSec": 1,
				"endOffsetSec":   5,
			},
		},
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances: []*structpb.Value{instances},
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		VideoEmbeddings []struct {
			Embedding      []float32 `json:"embedding"`
			StartOffsetSec float64   `json:"startOffsetSec"`
			EndOffsetSec   float64   `json:"endOffsetSec"`
		} `json:"videoEmbeddings"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal json: %w", err)
	}
	// Get the embedding for our single video segment (`.videoEmbeddings` object has one entry per
	// each processed segment).
	videoEmbedding := instanceEmbeddings.VideoEmbeddings[0]

	fmt.Fprintf(w, "Video embedding (seconds: %.f-%.f; length=%d): %v\n",
		videoEmbedding.StartOffsetSec,
		videoEmbedding.EndOffsetSec,
		len(videoEmbedding.Embedding),
		videoEmbedding.Embedding,
	)
	// Example response:
	// Video embedding (seconds: 1-5; length=1408): [-0.016427778 0.032878537 -0.030755188 ... ]

	return nil
}

Caso de uso avanzado

Usa el siguiente ejemplo para obtener incorporaciones para contenido de video, texto e imagen.

Para las incorporaciones de video, puedes especificar el segmento y la densidad de incorporación del video.

REST

En el siguiente ejemplo, se usan datos de imagen, texto y video. Puedes usar cualquier combinación de estos tipos de datos en el cuerpo de tu solicitud.

En este ejemplo, se usa un video ubicado en Cloud Storage. También puedes usar el campo video.bytesBase64Encoded para proporcionar una representación de string codificada en base64 del video.

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: La región del proyecto. Por ejemplo, us-central1, europe-west2 o asia-northeast3. Para obtener una lista de las regiones disponibles, consulta IA generativa en ubicaciones de Vertex AI.
  • PROJECT_ID: El ID del proyecto de Google Cloud.
  • TEXT: El texto de destino para el que se obtendrán las incorporaciones. Por ejemplo:a cat
  • IMAGE_URI: Es el URI de Cloud Storage de la imagen para la que se obtendrán embeddings. Por ejemplo, gs://my-bucket/embeddings/supermarket-img.png

    También puedes proporcionar la imagen como una cadena de bytes codificada en Base64:

    [...]
    "image": {
      "bytesBase64Encoded": "B64_ENCODED_IMAGE"
    }
    [...]
    
  • VIDEO_URI: Es el URI de Cloud Storage del video objetivo del que deseas obtener las incorporaciones. Por ejemplo, gs://my-bucket/embeddings/supermarket-video.mp4

    También puedes proporcionar el video como una cadena de bytes codificada en Base64:

    [...]
    "video": {
      "bytesBase64Encoded": "B64_ENCODED_VIDEO"
    }
    [...]
    
  • videoSegmentConfig (START_SECOND, END_SECOND, INTERVAL_SECONDS). Opcional. Los segmentos de video específicos (en segundos) para los que se generan las incorporaciones.

    Por ejemplo:

    [...]
    "videoSegmentConfig": {
      "startOffsetSec": 10,
      "endOffsetSec": 60,
      "intervalSec": 10
    }
    [...]

    El uso de esta configuración especifica los datos de video de 10 a 60 segundos y genera incorporaciones para los siguientes intervalos de video de 10 segundos: [10, 20), [20, 30), [30, 40), [40, 50), [50, 60]. Este intervalo de video ("intervalSec": 10) se encuentra en el modo de incorporación de video Standard, y se cobra al usuario la tarifa del modo Standard.

    Si omites videoSegmentConfig, el servicio usa los siguientes valores predeterminados: "videoSegmentConfig": { "startOffsetSec": 0, "endOffsetSec": 120, "intervalSec": 16 }. Este intervalo de video ("intervalSec": 16) se encuentra en el modo de incorporación de video Essential, y se le cobra al usuario la tarifa del modo Essential.

HTTP method and URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict

Cuerpo JSON de la solicitud:

{
  "instances": [
    {
      "text": "TEXT",
      "image": {
        "gcsUri": "IMAGE_URI"
      },
      "video": {
        "gcsUri": "VIDEO_URI",
        "videoSegmentConfig": {
          "startOffsetSec": START_SECOND,
          "endOffsetSec": END_SECOND,
          "intervalSec": INTERVAL_SECONDS
        }
      }
    }
  ]
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/multimodalembedding@001:predict" | Select-Object -Expand Content
La incorporación que muestra el modelo es un vector de número de punto flotante de 1,408. La siguiente muestra de respuesta se acorta por razones de espacio.
{
  "predictions": [
    {
      "textEmbedding": [
        0.0105433334,
        -0.00302835181,
        0.00656806398,
        0.00603460241,
        [...]
        0.00445805816,
        0.0139605571,
        -0.00170318608,
        -0.00490092579
      ],
      "videoEmbeddings": [
        {
          "startOffsetSec": 0,
          "endOffsetSec": 7,
          "embedding": [
            -0.00673126569,
            0.0248149596,
            0.0128901172,
            0.0107588246,
            [...]
            -0.00180952181,
            -0.0054573305,
            0.0117037306,
            0.0169312079
          ]
        }
      ],
      "imageEmbedding": [
        -0.00728622358,
        0.031021487,
        -0.00206603738,
        0.0273937676,
        [...]
        -0.00204976718,
        0.00321615417,
        0.0121978866,
        0.0193375275
      ]
    }
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

import vertexai

from vertexai.vision_models import Image, MultiModalEmbeddingModel, Video
from vertexai.vision_models import VideoSegmentConfig

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")

image = Image.load_from_file(
    "gs://cloud-samples-data/vertex-ai/llm/prompts/landmark1.png"
)
video = Video.load_from_file(
    "gs://cloud-samples-data/vertex-ai-vision/highway_vehicles.mp4"
)

embeddings = model.get_embeddings(
    image=image,
    video=video,
    video_segment_config=VideoSegmentConfig(end_offset_sec=1),
    contextual_text="Cars on Highway",
)

print(f"Image Embedding: {embeddings.image_embedding}")

# Video Embeddings are segmented based on the video_segment_config.
print("Video Embeddings:")
for video_embedding in embeddings.video_embeddings:
    print(
        f"Video Segment: {video_embedding.start_offset_sec} - {video_embedding.end_offset_sec}"
    )
    print(f"Embedding: {video_embedding.embedding}")

print(f"Text Embedding: {embeddings.text_embedding}")
# Example response:
# Image Embedding: [-0.0123144267, 0.0727186054, 0.000201397663, ...]
# Video Embeddings:
# Video Segment: 0.0 - 1.0
# Embedding: [-0.0206376351, 0.0345234685, ...]
# Text Embedding: [-0.0207006838, -0.00251058186, ...]

Go

Antes de probar este ejemplo, sigue las instrucciones de configuración para Go incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Go.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

import (
	"context"
	"encoding/json"
	"fmt"
	"io"
	"time"

	aiplatform "cloud.google.com/go/aiplatform/apiv1beta1"
	aiplatformpb "cloud.google.com/go/aiplatform/apiv1beta1/aiplatformpb"
	"google.golang.org/api/option"
	"google.golang.org/protobuf/encoding/protojson"
	"google.golang.org/protobuf/types/known/structpb"
)

// generateForImageTextAndVideo shows how to use the multimodal model to generate embeddings for
// image, text and video data.
func generateForImageTextAndVideo(w io.Writer, project, location string) error {
	// location = "us-central1"

	// The default context timeout may be not enough to process a video input.
	ctx, cancel := context.WithTimeout(context.Background(), 15*time.Second)
	defer cancel()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return fmt.Errorf("failed to construct API client: %w", err)
	}
	defer client.Close()

	model := "multimodalembedding@001"
	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)

	// This is the input to the model's prediction call. For schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#request_body
	instance, err := structpb.NewValue(map[string]any{
		"text": "Domestic cats in natural conditions",
		"image": map[string]any{
			// Image and video inputs can be provided either as a Google Cloud Storage URI or as
			// base64-encoded bytes using the "bytesBase64Encoded" field.
			"gcsUri": "gs://cloud-samples-data/generative-ai/image/320px-Felis_catus-cat_on_snow.jpg",
		},
		"video": map[string]any{
			"gcsUri": "gs://cloud-samples-data/video/cat.mp4",
		},
	})
	if err != nil {
		return fmt.Errorf("failed to construct request payload: %w", err)
	}

	req := &aiplatformpb.PredictRequest{
		Endpoint: endpoint,
		// The model supports only 1 instance per request.
		Instances: []*structpb.Value{instance},
	}

	resp, err := client.Predict(ctx, req)
	if err != nil {
		return fmt.Errorf("failed to generate embeddings: %w", err)
	}

	instanceEmbeddingsJson, err := protojson.Marshal(resp.GetPredictions()[0])
	if err != nil {
		return fmt.Errorf("failed to convert protobuf value to JSON: %w", err)
	}
	// For response schema, see:
	// https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/multimodal-embeddings-api#response-body
	var instanceEmbeddings struct {
		ImageEmbeddings []float32 `json:"imageEmbedding"`
		TextEmbeddings  []float32 `json:"textEmbedding"`
		VideoEmbeddings []struct {
			Embedding      []float32 `json:"embedding"`
			StartOffsetSec float64   `json:"startOffsetSec"`
			EndOffsetSec   float64   `json:"endOffsetSec"`
		} `json:"videoEmbeddings"`
	}
	if err := json.Unmarshal(instanceEmbeddingsJson, &instanceEmbeddings); err != nil {
		return fmt.Errorf("failed to unmarshal JSON: %w", err)
	}

	imageEmbedding := instanceEmbeddings.ImageEmbeddings
	textEmbedding := instanceEmbeddings.TextEmbeddings
	// Get the embedding for our single video segment (`.videoEmbeddings` object has one entry per
	// each processed segment).
	videoEmbedding := instanceEmbeddings.VideoEmbeddings[0].Embedding

	fmt.Fprintf(w, "Image embedding (length=%d): %v\n", len(imageEmbedding), imageEmbedding)
	fmt.Fprintf(w, "Text embedding (length=%d): %v\n", len(textEmbedding), textEmbedding)
	fmt.Fprintf(w, "Video embedding (length=%d): %v\n", len(videoEmbedding), videoEmbedding)
	// Example response:
	// Image embedding (length=1408): [-0.01558477 0.0258355 0.016342038 ... ]
	// Text embedding (length=1408): [-0.005894961 0.008349559 0.015355394 ... ]
	// Video embedding (length=1408): [-0.018867437 0.013997682 0.0012682161 ... ]

	return nil
}

¿Qué sigue?

Para obtener documentación detallada, consulta lo siguiente: