- 0.58.0 (latest)
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::IndexDatapoint.
A datapoint of Index.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#crowding_tag
def crowding_tag() -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
#crowding_tag=
def crowding_tag=(value) -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag
Parameter
- value (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
#datapoint_id
def datapoint_id() -> ::String
Returns
- (::String) — Required. Unique identifier of the datapoint.
#datapoint_id=
def datapoint_id=(value) -> ::String
Parameter
- value (::String) — Required. Unique identifier of the datapoint.
Returns
- (::String) — Required. Unique identifier of the datapoint.
#feature_vector
def feature_vector() -> ::Array<::Float>
Returns
- (::Array<::Float>) — Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
#feature_vector=
def feature_vector=(value) -> ::Array<::Float>
Parameter
- value (::Array<::Float>) — Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
Returns
- (::Array<::Float>) — Required. Feature embedding vector for dense index. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
#numeric_restricts
def numeric_restricts() -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::NumericRestriction>
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::NumericRestriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.
#numeric_restricts=
def numeric_restricts=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::NumericRestriction>
Parameter
- value (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::NumericRestriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::NumericRestriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses numeric comparisons.
#restricts
def restricts() -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
#restricts=
def restricts=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>
Parameter
- value (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. This uses categorical tokens. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
#sparse_embedding
def sparse_embedding() -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::SparseEmbedding
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::SparseEmbedding) — Optional. Feature embedding vector for sparse index.
#sparse_embedding=
def sparse_embedding=(value) -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::SparseEmbedding
Parameter
- value (::Google::Cloud::AIPlatform::V1::IndexDatapoint::SparseEmbedding) — Optional. Feature embedding vector for sparse index.
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::SparseEmbedding) — Optional. Feature embedding vector for sparse index.