- 0.58.0 (latest)
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::IndexDatapoint.
A datapoint of Index.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#crowding_tag
def crowding_tag() -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
#crowding_tag=
def crowding_tag=(value) -> ::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag
Parameter
- value (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
Returns
- (::Google::Cloud::AIPlatform::V1::IndexDatapoint::CrowdingTag) — Optional. CrowdingTag of the datapoint, the number of neighbors to return in each crowding can be configured during query.
#datapoint_id
def datapoint_id() -> ::String
Returns
- (::String) — Required. Unique identifier of the datapoint.
#datapoint_id=
def datapoint_id=(value) -> ::String
Parameter
- value (::String) — Required. Unique identifier of the datapoint.
Returns
- (::String) — Required. Unique identifier of the datapoint.
#feature_vector
def feature_vector() -> ::Array<::Float>
Returns
- (::Array<::Float>) — Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
#feature_vector=
def feature_vector=(value) -> ::Array<::Float>
Parameter
- value (::Array<::Float>) — Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
Returns
- (::Array<::Float>) — Required. Feature embedding vector. An array of numbers with the length of [NearestNeighborSearchConfig.dimensions].
#restricts
def restricts() -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
#restricts=
def restricts=(value) -> ::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>
Parameter
- value (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering
Returns
- (::Array<::Google::Cloud::AIPlatform::V1::IndexDatapoint::Restriction>) — Optional. List of Restrict of the datapoint, used to perform "restricted searches" where boolean rule are used to filter the subset of the database eligible for matching. See: https://cloud.google.com/vertex-ai/docs/matching-engine/filtering