Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class XraiAttribution.
An explanation method that redistributes Integrated Gradients
attributions to segmented regions, taking advantage of the model's fully
differentiable structure. Refer to this paper for more details:
https://arxiv.org/abs/1906.02825
Supported only by image Models.
Generated from protobuf message google.cloud.aiplatform.v1.XraiAttribution
Namespace
Google \ Cloud \ AIPlatform \ V1
Methods
__construct
Constructor.
Parameters
Name
Description
data
array
Optional. Data for populating the Message object.
↳ step_count
int
Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
getStepCount
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
Returns
Type
Description
int
setStepCount
Required. The number of steps for approximating the path integral.
A good value to start is 50 and gradually increase until the
sum to diff property is met within the desired error range.
Valid range of its value is [1, 100], inclusively.
Parameter
Name
Description
var
int
Returns
Type
Description
$this
getSmoothGradConfig
Config for SmoothGrad approximation of gradients.
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
When enabled, the gradients are approximated by averaging the gradients
from noisy samples in the vicinity of the inputs. Adding
noise can help improve the computed gradients. Refer to this paper for more
details: https://arxiv.org/pdf/1706.03825.pdf
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
When enabled, a linear path from the maximally blurred image to the input
image is created. Using a blurred baseline instead of zero (black image) is
motivated by the BlurIG approach explained here:
https://arxiv.org/abs/2004.03383
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Google Cloud Ai Platform V1 Client - Class XraiAttribution (1.35.0)\n\nVersion latestkeyboard_arrow_down\n\n- [1.35.0 (latest)](/php/docs/reference/cloud-ai-platform/latest/V1.XraiAttribution)\n- [1.34.0](/php/docs/reference/cloud-ai-platform/1.34.0/V1.XraiAttribution)\n- [1.33.0](/php/docs/reference/cloud-ai-platform/1.33.0/V1.XraiAttribution)\n- [1.32.1](/php/docs/reference/cloud-ai-platform/1.32.1/V1.XraiAttribution)\n- [1.31.0](/php/docs/reference/cloud-ai-platform/1.31.0/V1.XraiAttribution)\n- [1.30.0](/php/docs/reference/cloud-ai-platform/1.30.0/V1.XraiAttribution)\n- [1.26.0](/php/docs/reference/cloud-ai-platform/1.26.0/V1.XraiAttribution)\n- [1.23.0](/php/docs/reference/cloud-ai-platform/1.23.0/V1.XraiAttribution)\n- [1.22.0](/php/docs/reference/cloud-ai-platform/1.22.0/V1.XraiAttribution)\n- [1.21.0](/php/docs/reference/cloud-ai-platform/1.21.0/V1.XraiAttribution)\n- [1.20.0](/php/docs/reference/cloud-ai-platform/1.20.0/V1.XraiAttribution)\n- [1.19.0](/php/docs/reference/cloud-ai-platform/1.19.0/V1.XraiAttribution)\n- [1.18.0](/php/docs/reference/cloud-ai-platform/1.18.0/V1.XraiAttribution)\n- [1.17.0](/php/docs/reference/cloud-ai-platform/1.17.0/V1.XraiAttribution)\n- [1.16.0](/php/docs/reference/cloud-ai-platform/1.16.0/V1.XraiAttribution)\n- [1.15.0](/php/docs/reference/cloud-ai-platform/1.15.0/V1.XraiAttribution)\n- [1.14.0](/php/docs/reference/cloud-ai-platform/1.14.0/V1.XraiAttribution)\n- [1.13.1](/php/docs/reference/cloud-ai-platform/1.13.1/V1.XraiAttribution)\n- [1.12.0](/php/docs/reference/cloud-ai-platform/1.12.0/V1.XraiAttribution)\n- [1.11.0](/php/docs/reference/cloud-ai-platform/1.11.0/V1.XraiAttribution)\n- [1.10.0](/php/docs/reference/cloud-ai-platform/1.10.0/V1.XraiAttribution)\n- [1.9.0](/php/docs/reference/cloud-ai-platform/1.9.0/V1.XraiAttribution)\n- [1.8.0](/php/docs/reference/cloud-ai-platform/1.8.0/V1.XraiAttribution)\n- [1.7.0](/php/docs/reference/cloud-ai-platform/1.7.0/V1.XraiAttribution)\n- [1.6.0](/php/docs/reference/cloud-ai-platform/1.6.0/V1.XraiAttribution)\n- [1.5.0](/php/docs/reference/cloud-ai-platform/1.5.0/V1.XraiAttribution)\n- [1.4.0](/php/docs/reference/cloud-ai-platform/1.4.0/V1.XraiAttribution)\n- [1.3.0](/php/docs/reference/cloud-ai-platform/1.3.0/V1.XraiAttribution)\n- [1.2.0](/php/docs/reference/cloud-ai-platform/1.2.0/V1.XraiAttribution)\n- [1.1.0](/php/docs/reference/cloud-ai-platform/1.1.0/V1.XraiAttribution)\n- [1.0.0](/php/docs/reference/cloud-ai-platform/1.0.0/V1.XraiAttribution)\n- [0.39.0](/php/docs/reference/cloud-ai-platform/0.39.0/V1.XraiAttribution)\n- [0.38.0](/php/docs/reference/cloud-ai-platform/0.38.0/V1.XraiAttribution)\n- [0.37.1](/php/docs/reference/cloud-ai-platform/0.37.1/V1.XraiAttribution)\n- [0.32.0](/php/docs/reference/cloud-ai-platform/0.32.0/V1.XraiAttribution)\n- [0.31.0](/php/docs/reference/cloud-ai-platform/0.31.0/V1.XraiAttribution)\n- [0.30.0](/php/docs/reference/cloud-ai-platform/0.30.0/V1.XraiAttribution)\n- [0.29.0](/php/docs/reference/cloud-ai-platform/0.29.0/V1.XraiAttribution)\n- [0.28.0](/php/docs/reference/cloud-ai-platform/0.28.0/V1.XraiAttribution)\n- [0.27.0](/php/docs/reference/cloud-ai-platform/0.27.0/V1.XraiAttribution)\n- [0.26.2](/php/docs/reference/cloud-ai-platform/0.26.2/V1.XraiAttribution)\n- [0.25.0](/php/docs/reference/cloud-ai-platform/0.25.0/V1.XraiAttribution)\n- [0.24.0](/php/docs/reference/cloud-ai-platform/0.24.0/V1.XraiAttribution)\n- [0.23.0](/php/docs/reference/cloud-ai-platform/0.23.0/V1.XraiAttribution)\n- [0.22.0](/php/docs/reference/cloud-ai-platform/0.22.0/V1.XraiAttribution)\n- [0.21.0](/php/docs/reference/cloud-ai-platform/0.21.0/V1.XraiAttribution)\n- [0.20.0](/php/docs/reference/cloud-ai-platform/0.20.0/V1.XraiAttribution)\n- [0.19.0](/php/docs/reference/cloud-ai-platform/0.19.0/V1.XraiAttribution)\n- [0.18.0](/php/docs/reference/cloud-ai-platform/0.18.0/V1.XraiAttribution)\n- [0.17.0](/php/docs/reference/cloud-ai-platform/0.17.0/V1.XraiAttribution)\n- [0.16.0](/php/docs/reference/cloud-ai-platform/0.16.0/V1.XraiAttribution)\n- [0.15.0](/php/docs/reference/cloud-ai-platform/0.15.0/V1.XraiAttribution)\n- [0.13.0](/php/docs/reference/cloud-ai-platform/0.13.0/V1.XraiAttribution)\n- [0.12.0](/php/docs/reference/cloud-ai-platform/0.12.0/V1.XraiAttribution)\n- [0.11.1](/php/docs/reference/cloud-ai-platform/0.11.1/V1.XraiAttribution)\n- [0.10.0](/php/docs/reference/cloud-ai-platform/0.10.0/V1.XraiAttribution) \nReference documentation and code samples for the Google Cloud Ai Platform V1 Client class XraiAttribution.\n\nAn explanation method that redistributes Integrated Gradients\nattributions to segmented regions, taking advantage of the model's fully\ndifferentiable structure. Refer to this paper for more details:\n\u003chttps://arxiv.org/abs/1906.02825\u003e\nSupported only by image Models.\n\nGenerated from protobuf message `google.cloud.aiplatform.v1.XraiAttribution`\n\nNamespace\n---------\n\nGoogle \\\\ Cloud \\\\ AIPlatform \\\\ V1\n\nMethods\n-------\n\n### __construct\n\nConstructor.\n\n### getStepCount\n\nRequired. The number of steps for approximating the path integral.\n\nA good value to start is 50 and gradually increase until the\nsum to diff property is met within the desired error range.\nValid range of its value is \\[1, 100\\], inclusively.\n\n### setStepCount\n\nRequired. The number of steps for approximating the path integral.\n\nA good value to start is 50 and gradually increase until the\nsum to diff property is met within the desired error range.\nValid range of its value is \\[1, 100\\], inclusively.\n\n### getSmoothGradConfig\n\nConfig for SmoothGrad approximation of gradients.\n\nWhen enabled, the gradients are approximated by averaging the gradients\nfrom noisy samples in the vicinity of the inputs. Adding\nnoise can help improve the computed gradients. Refer to this paper for more\ndetails: \u003chttps://arxiv.org/pdf/1706.03825.pdf\u003e\n\n### hasSmoothGradConfig\n\n### clearSmoothGradConfig\n\n### setSmoothGradConfig\n\nConfig for SmoothGrad approximation of gradients.\n\nWhen enabled, the gradients are approximated by averaging the gradients\nfrom noisy samples in the vicinity of the inputs. Adding\nnoise can help improve the computed gradients. Refer to this paper for more\ndetails: \u003chttps://arxiv.org/pdf/1706.03825.pdf\u003e\n\n### getBlurBaselineConfig\n\nConfig for XRAI with blur baseline.\n\nWhen enabled, a linear path from the maximally blurred image to the input\nimage is created. Using a blurred baseline instead of zero (black image) is\nmotivated by the BlurIG approach explained here:\n\u003chttps://arxiv.org/abs/2004.03383\u003e\n\n### hasBlurBaselineConfig\n\n### clearBlurBaselineConfig\n\n### setBlurBaselineConfig\n\nConfig for XRAI with blur baseline.\n\nWhen enabled, a linear path from the maximally blurred image to the input\nimage is created. Using a blurred baseline instead of zero (black image) is\nmotivated by the BlurIG approach explained here:\n\u003chttps://arxiv.org/abs/2004.03383\u003e"]]