An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
Example-based explanations that returns the nearest neighbors from the provided dataset.
↳ top_k
int
If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
getSampledShapleyAttribution
An attribution method that approximates Shapley values for features that
contribute to the label being predicted. A sampling strategy is used to
approximate the value rather than considering all subsets of features.
An attribution method that approximates Shapley values for features that
contribute to the label being predicted. A sampling strategy is used to
approximate the value rather than considering all subsets of features.
An attribution method that computes Aumann-Shapley values taking
advantage of the model's fully differentiable structure. Refer to this
paper for more details: https://arxiv.org/abs/1703.01365
An attribution method that computes Aumann-Shapley values taking
advantage of the model's fully differentiable structure. Refer to this
paper for more details: https://arxiv.org/abs/1703.01365
An attribution method that redistributes Integrated Gradients
attribution to segmented regions, taking advantage of the model's fully
differentiable structure. Refer to this paper for
more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a
house or an animal. If the images are taken in artificial environments,
like a lab or manufacturing line, or from diagnostic equipment, like
x-rays or quality-control cameras, use Integrated Gradients instead.
An attribution method that redistributes Integrated Gradients
attribution to segmented regions, taking advantage of the model's fully
differentiable structure. Refer to this paper for
more details: https://arxiv.org/abs/1906.02825
XRAI currently performs better on natural images, like a picture of a
house or an animal. If the images are taken in artificial environments,
like a lab or manufacturing line, or from diagnostic equipment, like
x-rays or quality-control cameras, use Integrated Gradients instead.
If populated, returns attributions for top K indices of outputs
(defaults to 1). Only applies to Models that predicts more than one outputs
(e,g, multi-class Models). When set to -1, returns explanations for all
outputs.
Returns
Type
Description
int
setTopK
If populated, returns attributions for top K indices of outputs
(defaults to 1). Only applies to Models that predicts more than one outputs
(e,g, multi-class Models). When set to -1, returns explanations for all
outputs.
Parameter
Name
Description
var
int
Returns
Type
Description
$this
getOutputIndices
If populated, only returns attributions that have
output_index
contained in output_indices. It must be an ndarray of integers, with the
same shape of the output it's explaining.
If not populated, returns attributions for
top_k indices of
outputs. If neither top_k nor output_indices is populated, returns the
argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class
Models that predict multiple classes).
If populated, only returns attributions that have
output_index
contained in output_indices. It must be an ndarray of integers, with the
same shape of the output it's explaining.
If not populated, returns attributions for
top_k indices of
outputs. If neither top_k nor output_indices is populated, returns the
argmax index of the outputs.
Only applicable to Models that predict multiple outputs (e,g, multi-class
Models that predict multiple classes).
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Google Cloud Ai Platform V1 Client - Class ExplanationParameters (1.35.0)\n\nVersion latestkeyboard_arrow_down\n\n- [1.35.0 (latest)](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters)\n- [1.34.0](/php/docs/reference/cloud-ai-platform/1.34.0/V1.ExplanationParameters)\n- [1.33.0](/php/docs/reference/cloud-ai-platform/1.33.0/V1.ExplanationParameters)\n- [1.32.1](/php/docs/reference/cloud-ai-platform/1.32.1/V1.ExplanationParameters)\n- [1.31.0](/php/docs/reference/cloud-ai-platform/1.31.0/V1.ExplanationParameters)\n- [1.30.0](/php/docs/reference/cloud-ai-platform/1.30.0/V1.ExplanationParameters)\n- [1.26.0](/php/docs/reference/cloud-ai-platform/1.26.0/V1.ExplanationParameters)\n- [1.23.0](/php/docs/reference/cloud-ai-platform/1.23.0/V1.ExplanationParameters)\n- [1.22.0](/php/docs/reference/cloud-ai-platform/1.22.0/V1.ExplanationParameters)\n- [1.21.0](/php/docs/reference/cloud-ai-platform/1.21.0/V1.ExplanationParameters)\n- [1.20.0](/php/docs/reference/cloud-ai-platform/1.20.0/V1.ExplanationParameters)\n- [1.19.0](/php/docs/reference/cloud-ai-platform/1.19.0/V1.ExplanationParameters)\n- [1.18.0](/php/docs/reference/cloud-ai-platform/1.18.0/V1.ExplanationParameters)\n- [1.17.0](/php/docs/reference/cloud-ai-platform/1.17.0/V1.ExplanationParameters)\n- [1.16.0](/php/docs/reference/cloud-ai-platform/1.16.0/V1.ExplanationParameters)\n- [1.15.0](/php/docs/reference/cloud-ai-platform/1.15.0/V1.ExplanationParameters)\n- [1.14.0](/php/docs/reference/cloud-ai-platform/1.14.0/V1.ExplanationParameters)\n- [1.13.1](/php/docs/reference/cloud-ai-platform/1.13.1/V1.ExplanationParameters)\n- [1.12.0](/php/docs/reference/cloud-ai-platform/1.12.0/V1.ExplanationParameters)\n- [1.11.0](/php/docs/reference/cloud-ai-platform/1.11.0/V1.ExplanationParameters)\n- [1.10.0](/php/docs/reference/cloud-ai-platform/1.10.0/V1.ExplanationParameters)\n- [1.9.0](/php/docs/reference/cloud-ai-platform/1.9.0/V1.ExplanationParameters)\n- [1.8.0](/php/docs/reference/cloud-ai-platform/1.8.0/V1.ExplanationParameters)\n- [1.7.0](/php/docs/reference/cloud-ai-platform/1.7.0/V1.ExplanationParameters)\n- [1.6.0](/php/docs/reference/cloud-ai-platform/1.6.0/V1.ExplanationParameters)\n- [1.5.0](/php/docs/reference/cloud-ai-platform/1.5.0/V1.ExplanationParameters)\n- [1.4.0](/php/docs/reference/cloud-ai-platform/1.4.0/V1.ExplanationParameters)\n- [1.3.0](/php/docs/reference/cloud-ai-platform/1.3.0/V1.ExplanationParameters)\n- [1.2.0](/php/docs/reference/cloud-ai-platform/1.2.0/V1.ExplanationParameters)\n- [1.1.0](/php/docs/reference/cloud-ai-platform/1.1.0/V1.ExplanationParameters)\n- [1.0.0](/php/docs/reference/cloud-ai-platform/1.0.0/V1.ExplanationParameters)\n- [0.39.0](/php/docs/reference/cloud-ai-platform/0.39.0/V1.ExplanationParameters)\n- [0.38.0](/php/docs/reference/cloud-ai-platform/0.38.0/V1.ExplanationParameters)\n- [0.37.1](/php/docs/reference/cloud-ai-platform/0.37.1/V1.ExplanationParameters)\n- [0.32.0](/php/docs/reference/cloud-ai-platform/0.32.0/V1.ExplanationParameters)\n- [0.31.0](/php/docs/reference/cloud-ai-platform/0.31.0/V1.ExplanationParameters)\n- [0.30.0](/php/docs/reference/cloud-ai-platform/0.30.0/V1.ExplanationParameters)\n- [0.29.0](/php/docs/reference/cloud-ai-platform/0.29.0/V1.ExplanationParameters)\n- [0.28.0](/php/docs/reference/cloud-ai-platform/0.28.0/V1.ExplanationParameters)\n- [0.27.0](/php/docs/reference/cloud-ai-platform/0.27.0/V1.ExplanationParameters)\n- [0.26.2](/php/docs/reference/cloud-ai-platform/0.26.2/V1.ExplanationParameters)\n- [0.25.0](/php/docs/reference/cloud-ai-platform/0.25.0/V1.ExplanationParameters)\n- [0.24.0](/php/docs/reference/cloud-ai-platform/0.24.0/V1.ExplanationParameters)\n- [0.23.0](/php/docs/reference/cloud-ai-platform/0.23.0/V1.ExplanationParameters)\n- [0.22.0](/php/docs/reference/cloud-ai-platform/0.22.0/V1.ExplanationParameters)\n- [0.21.0](/php/docs/reference/cloud-ai-platform/0.21.0/V1.ExplanationParameters)\n- [0.20.0](/php/docs/reference/cloud-ai-platform/0.20.0/V1.ExplanationParameters)\n- [0.19.0](/php/docs/reference/cloud-ai-platform/0.19.0/V1.ExplanationParameters)\n- [0.18.0](/php/docs/reference/cloud-ai-platform/0.18.0/V1.ExplanationParameters)\n- [0.17.0](/php/docs/reference/cloud-ai-platform/0.17.0/V1.ExplanationParameters)\n- [0.16.0](/php/docs/reference/cloud-ai-platform/0.16.0/V1.ExplanationParameters)\n- [0.15.0](/php/docs/reference/cloud-ai-platform/0.15.0/V1.ExplanationParameters)\n- [0.13.0](/php/docs/reference/cloud-ai-platform/0.13.0/V1.ExplanationParameters)\n- [0.12.0](/php/docs/reference/cloud-ai-platform/0.12.0/V1.ExplanationParameters)\n- [0.11.1](/php/docs/reference/cloud-ai-platform/0.11.1/V1.ExplanationParameters)\n- [0.10.0](/php/docs/reference/cloud-ai-platform/0.10.0/V1.ExplanationParameters) \nReference documentation and code samples for the Google Cloud Ai Platform V1 Client class ExplanationParameters.\n\nParameters to configure explaining for Model's predictions.\n\nGenerated from protobuf message `google.cloud.aiplatform.v1.ExplanationParameters`\n\nNamespace\n---------\n\nGoogle \\\\ Cloud \\\\ AIPlatform \\\\ V1\n\nMethods\n-------\n\n### __construct\n\nConstructor.\n\n### getSampledShapleyAttribution\n\nAn attribution method that approximates Shapley values for features that\ncontribute to the label being predicted. A sampling strategy is used to\napproximate the value rather than considering all subsets of features.\n\nRefer to this paper for model details: \u003chttps://arxiv.org/abs/1306.4265\u003e.\n\n### hasSampledShapleyAttribution\n\n### setSampledShapleyAttribution\n\nAn attribution method that approximates Shapley values for features that\ncontribute to the label being predicted. A sampling strategy is used to\napproximate the value rather than considering all subsets of features.\n\nRefer to this paper for model details: \u003chttps://arxiv.org/abs/1306.4265\u003e.\n\n### getIntegratedGradientsAttribution\n\nAn attribution method that computes Aumann-Shapley values taking\nadvantage of the model's fully differentiable structure. Refer to this\npaper for more details: \u003chttps://arxiv.org/abs/1703.01365\u003e\n\n### hasIntegratedGradientsAttribution\n\n### setIntegratedGradientsAttribution\n\nAn attribution method that computes Aumann-Shapley values taking\nadvantage of the model's fully differentiable structure. Refer to this\npaper for more details: \u003chttps://arxiv.org/abs/1703.01365\u003e\n\n### getXraiAttribution\n\nAn attribution method that redistributes Integrated Gradients\nattribution to segmented regions, taking advantage of the model's fully\ndifferentiable structure. Refer to this paper for\nmore details: \u003chttps://arxiv.org/abs/1906.02825\u003e\nXRAI currently performs better on natural images, like a picture of a\nhouse or an animal. If the images are taken in artificial environments,\nlike a lab or manufacturing line, or from diagnostic equipment, like\nx-rays or quality-control cameras, use Integrated Gradients instead.\n\n### hasXraiAttribution\n\n### setXraiAttribution\n\nAn attribution method that redistributes Integrated Gradients\nattribution to segmented regions, taking advantage of the model's fully\ndifferentiable structure. Refer to this paper for\nmore details: \u003chttps://arxiv.org/abs/1906.02825\u003e\nXRAI currently performs better on natural images, like a picture of a\nhouse or an animal. If the images are taken in artificial environments,\nlike a lab or manufacturing line, or from diagnostic equipment, like\nx-rays or quality-control cameras, use Integrated Gradients instead.\n\n### getExamples\n\nExample-based explanations that returns the nearest neighbors from the\nprovided dataset.\n\n### hasExamples\n\n### setExamples\n\nExample-based explanations that returns the nearest neighbors from the\nprovided dataset.\n\n### getTopK\n\nIf populated, returns attributions for top K indices of outputs\n(defaults to 1). Only applies to Models that predicts more than one outputs\n(e,g, multi-class Models). When set to -1, returns explanations for all\noutputs.\n\n### setTopK\n\nIf populated, returns attributions for top K indices of outputs\n(defaults to 1). Only applies to Models that predicts more than one outputs\n(e,g, multi-class Models). When set to -1, returns explanations for all\noutputs.\n\n### getOutputIndices\n\nIf populated, only returns attributions that have\n[output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncontained in output_indices. It must be an ndarray of integers, with the\nsame shape of the output it's explaining.\n\nIf not populated, returns attributions for\n[top_k](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getTopK__) indices of\noutputs. If neither top_k nor output_indices is populated, returns the\nargmax index of the outputs.\nOnly applicable to Models that predict multiple outputs (e,g, multi-class\nModels that predict multiple classes).\n\n### hasOutputIndices\n\n### clearOutputIndices\n\n### setOutputIndices\n\nIf populated, only returns attributions that have\n[output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncontained in output_indices. It must be an ndarray of integers, with the\nsame shape of the output it's explaining.\n\nIf not populated, returns attributions for\n[top_k](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getTopK__) indices of\noutputs. If neither top_k nor output_indices is populated, returns the\nargmax index of the outputs.\nOnly applicable to Models that predict multiple outputs (e,g, multi-class\nModels that predict multiple classes).\n\n### getMethod"]]