Output only. Feature attributions grouped by predicted outputs. For Models that predict only one output, such as regression Models that predict only one score, there is only one attibution that explains the predicted output. For Models that predict multiple outputs, such as multiclass Models that predict multiple classes, each element explains one specific item. Attribution.output_index can be used to identify which output this attribution is explaining. By default, we provide Shapley values for the predicted class. However, you can configure the explanation request to generate Shapley values for any other classes too. For example, if a model predicts a probability of 0.4 for approving a loan application, the model's decision is to reject the application since p(reject) = 0.6 > p(approve) = 0.4, and the default Shapley values would be computed for rejection decision and not approval, even though the latter might be the positive class. If users set ExplanationParameters.top_k, the attributions are sorted by instance_output_value in descending order. If ExplanationParameters.output_indices is specified, the attributions are stored by Attribution.output_index in the same order as they appear in the output_indices.
Output only. List of the nearest neighbors for example-based explanations. For models deployed with the examples explanations feature enabled, the attributions field is empty and instead the neighbors field is populated.
getAttributions
Output only. Feature attributions grouped by predicted outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
By default, we provide Shapley values for the predicted class. However,
you can configure the explanation request to generate Shapley values for
any other classes too. For example, if a model predicts a probability of
0.4 for approving a loan application, the model's decision is to reject
the application since p(reject) = 0.6 > p(approve) = 0.4, and the default
Shapley values would be computed for rejection decision and not approval,
even though the latter might be the positive class.
If users set
ExplanationParameters.top_k,
the attributions are sorted by
instance_output_value
in descending order. If
ExplanationParameters.output_indices
is specified, the attributions are stored by
Attribution.output_index
in the same order as they appear in the output_indices.
Output only. Feature attributions grouped by predicted outputs.
For Models that predict only one output, such as regression Models that
predict only one score, there is only one attibution that explains the
predicted output. For Models that predict multiple outputs, such as
multiclass Models that predict multiple classes, each element explains one
specific item.
Attribution.output_index
can be used to identify which output this attribution is explaining.
By default, we provide Shapley values for the predicted class. However,
you can configure the explanation request to generate Shapley values for
any other classes too. For example, if a model predicts a probability of
0.4 for approving a loan application, the model's decision is to reject
the application since p(reject) = 0.6 > p(approve) = 0.4, and the default
Shapley values would be computed for rejection decision and not approval,
even though the latter might be the positive class.
If users set
ExplanationParameters.top_k,
the attributions are sorted by
instance_output_value
in descending order. If
ExplanationParameters.output_indices
is specified, the attributions are stored by
Attribution.output_index
in the same order as they appear in the output_indices.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Google Cloud Ai Platform V1 Client - Class Explanation (1.35.0)\n\nVersion latestkeyboard_arrow_down\n\n- [1.35.0 (latest)](/php/docs/reference/cloud-ai-platform/latest/V1.Explanation)\n- [1.34.0](/php/docs/reference/cloud-ai-platform/1.34.0/V1.Explanation)\n- [1.33.0](/php/docs/reference/cloud-ai-platform/1.33.0/V1.Explanation)\n- [1.32.1](/php/docs/reference/cloud-ai-platform/1.32.1/V1.Explanation)\n- [1.31.0](/php/docs/reference/cloud-ai-platform/1.31.0/V1.Explanation)\n- [1.30.0](/php/docs/reference/cloud-ai-platform/1.30.0/V1.Explanation)\n- [1.26.0](/php/docs/reference/cloud-ai-platform/1.26.0/V1.Explanation)\n- [1.23.0](/php/docs/reference/cloud-ai-platform/1.23.0/V1.Explanation)\n- [1.22.0](/php/docs/reference/cloud-ai-platform/1.22.0/V1.Explanation)\n- [1.21.0](/php/docs/reference/cloud-ai-platform/1.21.0/V1.Explanation)\n- [1.20.0](/php/docs/reference/cloud-ai-platform/1.20.0/V1.Explanation)\n- [1.19.0](/php/docs/reference/cloud-ai-platform/1.19.0/V1.Explanation)\n- [1.18.0](/php/docs/reference/cloud-ai-platform/1.18.0/V1.Explanation)\n- [1.17.0](/php/docs/reference/cloud-ai-platform/1.17.0/V1.Explanation)\n- [1.16.0](/php/docs/reference/cloud-ai-platform/1.16.0/V1.Explanation)\n- [1.15.0](/php/docs/reference/cloud-ai-platform/1.15.0/V1.Explanation)\n- [1.14.0](/php/docs/reference/cloud-ai-platform/1.14.0/V1.Explanation)\n- [1.13.1](/php/docs/reference/cloud-ai-platform/1.13.1/V1.Explanation)\n- [1.12.0](/php/docs/reference/cloud-ai-platform/1.12.0/V1.Explanation)\n- [1.11.0](/php/docs/reference/cloud-ai-platform/1.11.0/V1.Explanation)\n- [1.10.0](/php/docs/reference/cloud-ai-platform/1.10.0/V1.Explanation)\n- [1.9.0](/php/docs/reference/cloud-ai-platform/1.9.0/V1.Explanation)\n- [1.8.0](/php/docs/reference/cloud-ai-platform/1.8.0/V1.Explanation)\n- [1.7.0](/php/docs/reference/cloud-ai-platform/1.7.0/V1.Explanation)\n- [1.6.0](/php/docs/reference/cloud-ai-platform/1.6.0/V1.Explanation)\n- [1.5.0](/php/docs/reference/cloud-ai-platform/1.5.0/V1.Explanation)\n- [1.4.0](/php/docs/reference/cloud-ai-platform/1.4.0/V1.Explanation)\n- [1.3.0](/php/docs/reference/cloud-ai-platform/1.3.0/V1.Explanation)\n- [1.2.0](/php/docs/reference/cloud-ai-platform/1.2.0/V1.Explanation)\n- [1.1.0](/php/docs/reference/cloud-ai-platform/1.1.0/V1.Explanation)\n- [1.0.0](/php/docs/reference/cloud-ai-platform/1.0.0/V1.Explanation)\n- [0.39.0](/php/docs/reference/cloud-ai-platform/0.39.0/V1.Explanation)\n- [0.38.0](/php/docs/reference/cloud-ai-platform/0.38.0/V1.Explanation)\n- [0.37.1](/php/docs/reference/cloud-ai-platform/0.37.1/V1.Explanation)\n- [0.32.0](/php/docs/reference/cloud-ai-platform/0.32.0/V1.Explanation)\n- [0.31.0](/php/docs/reference/cloud-ai-platform/0.31.0/V1.Explanation)\n- [0.30.0](/php/docs/reference/cloud-ai-platform/0.30.0/V1.Explanation)\n- [0.29.0](/php/docs/reference/cloud-ai-platform/0.29.0/V1.Explanation)\n- [0.28.0](/php/docs/reference/cloud-ai-platform/0.28.0/V1.Explanation)\n- [0.27.0](/php/docs/reference/cloud-ai-platform/0.27.0/V1.Explanation)\n- [0.26.2](/php/docs/reference/cloud-ai-platform/0.26.2/V1.Explanation)\n- [0.25.0](/php/docs/reference/cloud-ai-platform/0.25.0/V1.Explanation)\n- [0.24.0](/php/docs/reference/cloud-ai-platform/0.24.0/V1.Explanation)\n- [0.23.0](/php/docs/reference/cloud-ai-platform/0.23.0/V1.Explanation)\n- [0.22.0](/php/docs/reference/cloud-ai-platform/0.22.0/V1.Explanation)\n- [0.21.0](/php/docs/reference/cloud-ai-platform/0.21.0/V1.Explanation)\n- [0.20.0](/php/docs/reference/cloud-ai-platform/0.20.0/V1.Explanation)\n- [0.19.0](/php/docs/reference/cloud-ai-platform/0.19.0/V1.Explanation)\n- [0.18.0](/php/docs/reference/cloud-ai-platform/0.18.0/V1.Explanation)\n- [0.17.0](/php/docs/reference/cloud-ai-platform/0.17.0/V1.Explanation)\n- [0.16.0](/php/docs/reference/cloud-ai-platform/0.16.0/V1.Explanation)\n- [0.15.0](/php/docs/reference/cloud-ai-platform/0.15.0/V1.Explanation)\n- [0.13.0](/php/docs/reference/cloud-ai-platform/0.13.0/V1.Explanation)\n- [0.12.0](/php/docs/reference/cloud-ai-platform/0.12.0/V1.Explanation)\n- [0.11.1](/php/docs/reference/cloud-ai-platform/0.11.1/V1.Explanation)\n- [0.10.0](/php/docs/reference/cloud-ai-platform/0.10.0/V1.Explanation) \nReference documentation and code samples for the Google Cloud Ai Platform V1 Client class Explanation.\n\nExplanation of a prediction (provided in\n[PredictResponse.predictions](/php/docs/reference/cloud-ai-platform/latest/V1.PredictResponse#_Google_Cloud_AIPlatform_V1_PredictResponse__getPredictions__))\nproduced by the Model on a given\n[instance](/php/docs/reference/cloud-ai-platform/latest/V1.ExplainRequest#_Google_Cloud_AIPlatform_V1_ExplainRequest__getInstances__).\n\nGenerated from protobuf message `google.cloud.aiplatform.v1.Explanation`\n\nNamespace\n---------\n\nGoogle \\\\ Cloud \\\\ AIPlatform \\\\ V1\n\nMethods\n-------\n\n### __construct\n\nConstructor.\n\n### getAttributions\n\nOutput only. Feature attributions grouped by predicted outputs.\n\nFor Models that predict only one output, such as regression Models that\npredict only one score, there is only one attibution that explains the\npredicted output. For Models that predict multiple outputs, such as\nmulticlass Models that predict multiple classes, each element explains one\nspecific item.\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncan be used to identify which output this attribution is explaining.\nBy default, we provide Shapley values for the predicted class. However,\nyou can configure the explanation request to generate Shapley values for\nany other classes too. For example, if a model predicts a probability of\n`0.4` for approving a loan application, the model's decision is to reject\nthe application since `p(reject) = 0.6 \u003e p(approve) = 0.4`, and the default\nShapley values would be computed for rejection decision and not approval,\neven though the latter might be the positive class.\nIf users set\n[ExplanationParameters.top_k](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getTopK__),\nthe attributions are sorted by\n[instance_output_value](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getInstanceOutputValue__)\nin descending order. If\n[ExplanationParameters.output_indices](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getOutputIndices__)\nis specified, the attributions are stored by\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\nin the same order as they appear in the output_indices.\n\n### setAttributions\n\nOutput only. Feature attributions grouped by predicted outputs.\n\nFor Models that predict only one output, such as regression Models that\npredict only one score, there is only one attibution that explains the\npredicted output. For Models that predict multiple outputs, such as\nmulticlass Models that predict multiple classes, each element explains one\nspecific item.\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\ncan be used to identify which output this attribution is explaining.\nBy default, we provide Shapley values for the predicted class. However,\nyou can configure the explanation request to generate Shapley values for\nany other classes too. For example, if a model predicts a probability of\n`0.4` for approving a loan application, the model's decision is to reject\nthe application since `p(reject) = 0.6 \u003e p(approve) = 0.4`, and the default\nShapley values would be computed for rejection decision and not approval,\neven though the latter might be the positive class.\nIf users set\n[ExplanationParameters.top_k](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getTopK__),\nthe attributions are sorted by\n[instance_output_value](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getInstanceOutputValue__)\nin descending order. If\n[ExplanationParameters.output_indices](/php/docs/reference/cloud-ai-platform/latest/V1.ExplanationParameters#_Google_Cloud_AIPlatform_V1_ExplanationParameters__getOutputIndices__)\nis specified, the attributions are stored by\n[Attribution.output_index](/php/docs/reference/cloud-ai-platform/latest/V1.Attribution#_Google_Cloud_AIPlatform_V1_Attribution__getOutputIndex__)\nin the same order as they appear in the output_indices.\n\n### getNeighbors\n\nOutput only. List of the nearest neighbors for example-based explanations.\n\nFor models deployed with the examples explanations feature enabled, the\nattributions field is empty and instead the neighbors field is populated.\n\n### setNeighbors\n\nOutput only. List of the nearest neighbors for example-based explanations.\n\nFor models deployed with the examples explanations feature enabled, the\nattributions field is empty and instead the neighbors field is populated."]]