训练和测试旨在检测洗钱行为的模型
在本指南中,您将了解如何训练和测试用于检测洗钱行为的模型。您将完成一些基本步骤来准备环境并创建 AML AI 实例。然后,您可以提供 Google 数据集中的合成交易数据(以 BigQuery 表的形式),作为 AML AI 的输入。此输入用于训练和回测模型。
注册要进行预测的方后,该 API 会进行模型预测。结果用于分析一个通过结构化资金进行洗钱的示例实体。
准备工作
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
- Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required APIs:
gcloud services enable financialservices.googleapis.com
bigquery.googleapis.com cloudkms.googleapis.com bigquerydatatransfer.googleapis.com -
If you're using a local shell, then create local authentication credentials for your user account:
gcloud auth application-default login
You don't need to do this if you're using Cloud Shell.
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/financialservices.admin, roles/cloudkms.admin, roles/bigquery.admin
gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
- Replace
PROJECT_ID
with your project ID. -
Replace
USER_IDENTIFIER
with the identifier for your user account. For example,user:myemail@example.com
. - Replace
ROLE
with each individual role.
- Replace
- Install the Google Cloud CLI.
-
To initialize the gcloud CLI, run the following command:
gcloud init
-
Create or select a Google Cloud project.
-
Create a Google Cloud project:
gcloud projects create PROJECT_ID
Replace
PROJECT_ID
with a name for the Google Cloud project you are creating. -
Select the Google Cloud project that you created:
gcloud config set project PROJECT_ID
Replace
PROJECT_ID
with your Google Cloud project name.
-
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required APIs:
gcloud services enable financialservices.googleapis.com
bigquery.googleapis.com cloudkms.googleapis.com bigquerydatatransfer.googleapis.com -
If you're using a local shell, then create local authentication credentials for your user account:
gcloud auth application-default login
You don't need to do this if you're using Cloud Shell.
-
Grant roles to your user account. Run the following command once for each of the following IAM roles:
roles/financialservices.admin, roles/cloudkms.admin, roles/bigquery.admin
gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
- Replace
PROJECT_ID
with your project ID. -
Replace
USER_IDENTIFIER
with the identifier for your user account. For example,user:myemail@example.com
. - Replace
ROLE
with each individual role.
- Replace
- 本指南中的 API 请求使用相同的 Google Cloud 项目、位置和硬编码资源 ID,以便您更轻松地完成本指南。资源 ID 遵循
my-
resource-type 模式(例如my-key-ring
和my-model
)。请务必为本指南定义以下替换项:
所需权限
您需要拥有以下权限才能完成本快速入门:
权限 | 说明 |
---|---|
resourcemanager.projects.get | 获取 Google Cloud 项目 |
resourcemanager.projects.list | 列出 Google Cloud 项目 |
cloudkms.keyRings.create | 创建 Cloud KMS 密钥环 |
cloudkms.cryptoKeys.create | 创建 Cloud KMS 密钥 |
financialservices.v1instances.create | 创建 AML AI 实例 |
financialservices.operations.get | 获取 AML AI 操作 |
cloudkms.cryptoKeys.getIamPolicy | 获取 Cloud KMS 密钥的 IAM 政策 |
cloudkms.cryptoKeys.setIamPolicy | 为 Cloud KMS 密钥设置 IAM 政策 |
bigquery.datasets.create | 创建 BigQuery 数据集 |
bigquery.datasets.get | 获取 BigQuery 数据集 |
bigquery.transfers.get | 获取 BigQuery Data Transfer Service 转移 |
bigquery.transfers.update | 创建或删除 BigQuery Data Transfer Service 转移作业 |
bigquery.datasets.setIamPolicy | 为 BigQuery 数据集设置 IAM 政策 |
bigquery.datasets.update | 更新 BigQuery 数据集 |
financialservices.v1datasets.create | 创建 AML AI 数据集 |
financialservices.v1engineconfigs.create | 创建 AML AI 引擎配置 |
financialservices.v1models.create | 创建 AML AI 模型 |
financialservices.v1backtests.create | 创建 AML AI 回测结果 |
financialservices.v1backtests.exportMetadata | 从反洗钱 AI 回测结果导出元数据 |
financialservices.v1instances.importRegisteredParties | 将已注册的相关方导入 AML AI 实例 |
financialservices.v1predictions.create | 创建 AML AI 预测结果 |
bigquery.jobs.create | 创建 BigQuery 作业 |
bigquery.tables.getData | 从 BigQuery 表中获取数据 |
financialservices.v1predictions.delete | 删除 AML AI 预测结果 |
financialservices.v1backtests.delete | 删除 AML AI 回测结果 |
financialservices.v1models.delete | 删除 AML AI 模型 |
financialservices.v1engineconfigs.delete | 删除 AML AI 引擎配置 |
financialservices.v1datasets.delete | 删除反洗钱 AI 数据集 |
financialservices.v1instances.delete | 删除 AML AI 实例 |
bigquery.datasets.delete | 删除 BigQuery 数据集 |
创建实例
本部分介绍了如何创建实例。AML AI 实例位于所有其他 AML AI 资源的根目录下。每个实例都需要一个关联的客户管理的加密密钥 (CMEK),该密钥用于加密 AML AI 创建的所有数据。
创建密钥环
如需创建钥匙串,请使用 projects.locations.keyRings.create
方法。
REST
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings?key_ring_id=my-key-ring"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings?key_ring_id=my-key-ring" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring", "createTime": CREATE_TIME }
gcloud
执行以下命令:
Linux、macOS 或 Cloud Shell
gcloud kms keyrings create my-key-ring \ --location LOCATION
Windows (PowerShell)
gcloud kms keyrings create my-key-ring ` --location LOCATION
Windows (cmd.exe)
gcloud kms keyrings create my-key-ring ^ --location LOCATION
$
创建密钥
如需创建密钥,请使用 projects.locations.keyRings.cryptoKeys
方法。
REST
请求 JSON 正文:
{ "purpose": "ENCRYPT_DECRYPT" }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "purpose": "ENCRYPT_DECRYPT" } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys?crypto_key_id=my-key"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "purpose": "ENCRYPT_DECRYPT" } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://cloudkms.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys?crypto_key_id=my-key" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key", "primary": { "name": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key/cryptoKeyVersions/1", "state": "ENABLED", "createTime": CREATE_TIME, "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION", "generateTime": GENERATE_TIME }, "purpose": "ENCRYPT_DECRYPT", "createTime": CREATE_TIME, "versionTemplate": { "protectionLevel": "SOFTWARE", "algorithm": "GOOGLE_SYMMETRIC_ENCRYPTION" }, "destroyScheduledDuration": "86400s" }
gcloud
在使用下面的命令数据之前,请先进行以下替换:
LOCATION
:密钥环的位置;请使用某个受支持的地区显示位置us-central1
us-east1
asia-south1
europe-west1
europe-west2
europe-west4
northamerica-northeast1
southamerica-east1
australia-southeast1
执行以下命令:
Linux、macOS 或 Cloud Shell
gcloud kms keys create my-key \ --keyring my-key-ring \ --location LOCATION \ --purpose "encryption"
Windows (PowerShell)
gcloud kms keys create my-key ` --keyring my-key-ring ` --location LOCATION ` --purpose "encryption"
Windows (cmd.exe)
gcloud kms keys create my-key ^ --keyring my-key-ring ^ --location LOCATION ^ --purpose "encryption"
$
使用 API 创建实例
如需创建实例,请使用 projects.locations.instances.create
方法。
请求 JSON 正文:
{ "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances?instance_id=my-instance"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "kmsKey": "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances?instance_id=my-instance" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
如果成功,响应正文将包含一个长时间运行的操作,其中包含一个 ID,该 ID 可用于检索异步操作的持续状态。复制返回的 OPERATION_ID
以供下一部分使用。
检查结果
使用 projects.locations.operations.get
方法检查实例是否已创建。如果响应包含 "done": false
,请重复该命令,直到响应包含 "done": true
。
本指南中的操作可能需要几分钟到几小时才能完成。您必须等到操作完成,然后才能继续阅读本指南,因为该 API 会将某些方法的输出用作其他方法的输入。
在使用任何请求数据之前,请先进行以下替换:
OPERATION_ID
:操作的标识符
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "endTime": END_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": true, "response": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.Instance", "name": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "createTime": CREATE_TIME, "updateTime": UPDATE_TIME, "kmsKey": "projects/KMS_PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key", "state": "ACTIVE" } }
授予对 CMEK 密钥的访问权限
该 API 会自动在您的项目中创建一个服务账号。服务账号需要访问 CMEK 密钥,才能使用该密钥加密和解密底层数据。授予对密钥的访问权限。
gcloud kms keys add-iam-policy-binding "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring/cryptoKeys/my-key" \
--keyring "projects/PROJECT_ID/locations/LOCATION/keyRings/my-key-ring" \
--location "LOCATION" \
--member "serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com" \
--role="roles/cloudkms.cryptoKeyEncrypterDecrypter" \
--project="PROJECT_ID"
创建 BigQuery 数据集
本部分介绍了如何创建输入和输出 BigQuery 数据集,然后将银行数据示例复制到输入数据集。
创建输出数据集
创建数据集,用于将 AML 流水线输出发送到该数据集。
Bash
bq mk \
--location=LOCATION \
--project_id=PROJECT_ID \
my_bq_output_dataset
PowerShell
bq mk `
--location=LOCATION `
--project_id=PROJECT_ID `
my_bq_output_dataset
创建输入数据集
创建一个数据集,将银行示例表复制到其中。
Bash
bq mk \
--location=LOCATION \
--project_id=PROJECT_ID \
my_bq_input_dataset
PowerShell
bq mk `
--location=LOCATION `
--project_id=PROJECT_ID `
my_bq_input_dataset
复制示例数据集
银行数据示例以 BigQuery 数据集的形式提供在 Google 的共享数据集项目中。您必须有权访问 AML AI API,才能访问此数据集。此数据集的主要特点包括:
- 10 万个相关方
- 核心时间范围为 2020 年 1 月 1 日至 2023 年 1 月 1 日,以及额外的 24 个月回溯数据
- 每月 300 个负例和 20 个正例风险信号
- 具有以下属性的风险信号:
- 一半的风险信号正例涉及在
AML_PROCESS_START
事件发生前两个月内发生的结构化活动 - 另一半则涵盖在
AML_PROCESS_START
事件发生前两个月内收到金额最多的相关方 - 负例是随机生成的
- 生成风险案例时,出现相反状态的概率为 0.1%(例如,随机生成的相关方为正例,或者相关方存在结构化活动或收入最高,但被报告为负例)
- 一半的风险信号正例涉及在
- AML 架构在 AML 输入数据模型中定义。
将银行业示例数据复制到您创建的输入数据集。
Bash
bq mk --transfer_config \ --project_id=PROJECT_ID \ --data_source=cross_region_copy \ --target_dataset="my_bq_input_dataset" \ --display_name="Copy the AML sample dataset." \ --schedule=None \ --params='{ "source_project_id":"bigquery-public-data", "source_dataset_id":"aml_ai_input_dataset", "overwrite_destination_table":"true" }'
PowerShell
bq mk --transfer_config ` --project_id=PROJECT_ID ` --data_source=cross_region_copy ` --target_dataset="my_bq_input_dataset" ` --display_name="Copy the AML sample dataset." ` --schedule=None ` --params='{\"source_project_id\":\"bigquery-public-data\",\"source_dataset_id\":\"aml_ai_input_dataset\",\"overwrite_destination_table\":\"true\"}'
监控数据传输作业。
Bash
bq ls --transfer_config \ --transfer_location=LOCATION \ --project_id=PROJECT_ID \ --filter="dataSourceIds:cross_region_copy"
PowerShell
bq ls --transfer_config ` --transfer_location=LOCATION ` --project_id=PROJECT_ID ` --filter="dataSourceIds:cross_region_copy"
转移完成后,系统会创建一个显示名称为
Copy the AML sample dataset
的数据传输作业。您还可以使用 Google Cloud 控制台查看转移状态。
您应该会看到类似以下输出的内容。
name displayName dataSourceId state ------------------------------------------- ----------------------- ----------------- --------- projects/294024168771/locations/us-central1 Copy AML sample dataset cross_region_copy SUCCEEDED
授予对 BigQuery 数据集的访问权限
该 API 会自动在您的项目中创建一个服务账号。服务账号需要对 BigQuery 输入和输出数据集拥有访问权限。
授予对输入数据集及其表的读取权限。
Bash
bq query --project_id=PROJECT_ID --use_legacy_sql=false \ 'GRANT `roles/bigquery.dataViewer` ON SCHEMA `PROJECT_ID.my_bq_input_dataset` TO "serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com"'
PowerShell
bq query --project_id=PROJECT_ID --use_legacy_sql=false "GRANT ``roles/bigquery.dataViewer`` ON SCHEMA ``PROJECT_ID.my_bq_input_dataset`` TO 'serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com'"
授予对输出数据集的写入权限。
Bash
bq query --project_id=PROJECT_ID --use_legacy_sql=false \ 'GRANT `roles/bigquery.dataEditor` ON SCHEMA `PROJECT_ID.my_bq_output_dataset` TO "serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com"'
PowerShell
bq query --project_id=PROJECT_ID --use_legacy_sql=false "GRANT ``roles/bigquery.dataEditor`` ON SCHEMA ``PROJECT_ID.my_bq_output_dataset`` TO 'serviceAccount:service-PROJECT_NUMBER@gcp-sa-financialservices.iam.gserviceaccount.com'"
创建 AML AI 数据集
创建 AML AI 数据集,以指定输入 BigQuery 数据集表和要使用的时间范围。
如需创建数据集,请使用 projects.locations.instances.datasets.create
方法。
请求 JSON 正文:
{ "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets?dataset_id=my-dataset"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "tableSpecs": { "party": "bq://PROJECT_ID.my_bq_input_dataset.party", "account_party_link": "bq://PROJECT_ID.my_bq_input_dataset.account_party_link", "transaction": "bq://PROJECT_ID.my_bq_input_dataset.transaction", "risk_case_event": "bq://PROJECT_ID.my_bq_input_dataset.risk_case_event", "party_supplementary_data": "bq://PROJECT_ID.my_bq_input_dataset.party_supplementary_data" }, "dateRange": { "startTime": "2020-01-01T00:00:0.00Z", "endTime": "2023-01-01T00:00:0.00Z" }, "timeZone": { "id": "UTC" } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets?dataset_id=my-dataset" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
您可以使用新的操作 ID 检查操作结果。(您可以对本指南中使用的其余 API 请求执行此操作。)
创建引擎配置
创建 AML AI 引擎配置,以根据给定的引擎版本和提供的数据自动调整超参数。引擎版本会定期发布,并对应于不同的模型逻辑(例如,定位到零售业务领域,而不是商业业务领域)。
如需创建引擎配置,请使用 projects.locations.instances.engineConfigs.create
方法。
此阶段涉及超参数调优,处理可能需要一些时间。只要您的数据没有发生重大变化,此步骤便可用于创建和测试许多模型。
请求 JSON 正文:
{ "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs?engine_config_id=my-engine-config"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "engineVersion": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineVersions/aml-commercial.default.v004.000.202312-000", "tuning": { "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" }, "performanceTarget": { "partyInvestigationsPerPeriodHint": "30" } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs?engine_config_id=my-engine-config" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
创建模型
在此步骤中,您将使用 2021 年 7 月 1 日之前 12 个月的数据训练 AML AI 模型。
如需创建模型,请使用 projects.locations.instances.models.create
方法。
请求 JSON 正文:
{ "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models?model_id=my-model"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "engineConfig": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "primaryDataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2021-07-01T00:00:00Z" } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models?model_id=my-model" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
创建回测结果
回测预测会对现有的历史数据使用训练好的模型。针对 2023 年 1 月之前的 12 个月数据(未用于训练)创建回测结果。这些月份用于确定,如果我们在 2022 年 1 月至 12 月期间在生产环境中使用了截至 2021 年 7 月训练的模型,可能需要处理多少个案例。
如需创建回测结果,请使用 projects.locations.instances.backtestResults.create
方法。
请求 JSON 正文:
{ "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults?backtest_result_id=my-backtest-results"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "backtestPeriods": 12, "performanceTarget": { "partyInvestigationsPerPeriodHint": "150" } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults?backtest_result_id=my-backtest-results" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
导出回测结果元数据
运行回测后,您需要将其结果导出到 BigQuery 才能查看。如需从回测结果中导出元数据,请使用 projects.locations.instances.backtestResults.exportMetadata
方法。
请求 JSON 正文:
{ "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results:exportMetadata"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "structuredMetadataDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_backtest_results_metadata", "writeDisposition": "WRITE_TRUNCATE" } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results:exportMetadata" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "exportMetadata", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
操作完成后,请执行以下操作:
在 Google Cloud 控制台中打开 BigQuery。
在探索器窗格中,找到并展开您的项目。
展开 my_bq_output_dataset,然后点击 my_backtest_results_metadata。
在菜单栏中,点击预览。
在“name”列中,找到包含“ObservedRecallValues”的这一行。
假设您每月的调查能力为 120 项。使用
"partyInvestigationsPerPeriod": "120"
查找 Recall 值对象。对于以下示例值,如果您将调查范围限制为风险得分高于 0.53 的方,则预计每个月会调查 120 个新方。在回测期(2022 年)内,您将发现之前系统发现的 86% 的案例(以及当前流程未发现的其他案例)。{ "recallValues": [ ... { "partyInvestigationsPerPeriod": "105", "recallValue": 0.8142077, "scoreThreshold": 0.6071321 }, { "partyInvestigationsPerPeriod": "120", "recallValue": 0.863388, "scoreThreshold": 0.5339603 }, { "partyInvestigationsPerPeriod": "135", "recallValue": 0.89071035, "scoreThreshold": 0.4739899 }, ... ] }
如需详细了解其他字段,请参阅回测结果。
通过更改 partyInvestigationsPerPeriodHint
字段,您可以修改回测生成的调查数量。获取得分以便调查、注册方和针对方生成预测。
导入已注册的相关方
在创建预测结果之前,您需要导入已注册的相关方(即数据集中的客户)。
如需导入已注册的相关方,请使用 projects.locations.instances.importRegisteredParties
方法。
请求 JSON 正文:
{ "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance:importRegisteredParties"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "partyTables": [ "bq://PROJECT_ID.my_bq_input_dataset.party_registration" ], "mode": "REPLACE", "lineOfBusiness": "COMMERCIAL" } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance:importRegisteredParties" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "importRegisteredParties", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
请持续检查该操作的结果,直到该操作完成。完成后,您应该会在 JSON 输出中看到 10,000 个注册的方。
创建预测结果
针对数据集中过去 12 个月的数据创建预测结果;这些月份在训练期间未使用。创建预测结果后,系统会为每个方在所有预测期内的每个月生成得分。
如需创建预测结果,请使用 projects.locations.instances.predictionResults.create
方法。
请求 JSON 正文:
{ "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } }
如需发送请求,请选择以下方式之一:
curl
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
cat > request.json << 'EOF' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } } EOF
然后,执行以下命令以发送 REST 请求:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults?prediction_result_id=my-prediction-results"
PowerShell
将请求正文保存在名为 request.json
的文件中。在终端中运行以下命令,在当前目录中创建或覆盖此文件:
@' { "model": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "dataset": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "endTime": "2023-01-01T00:00:00Z", "predictionPeriods": "12", "outputs": { "predictionDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results", "writeDisposition": "WRITE_TRUNCATE" }, "explainabilityDestination": { "tableUri": "bq://PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability", "writeDisposition": "WRITE_TRUNCATE" } } } '@ | Out-File -FilePath request.json -Encoding utf8
然后,执行以下命令以发送 REST 请求:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults?prediction_result_id=my-prediction-results" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results", "verb": "create", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
在 Google Cloud 控制台中分析单个结构化问题
在 Google Cloud 控制台中打开 BigQuery。
在详细信息窗格中,点击未命名查询标签页以查看编辑器。
将以下 SQL 语句复制到编辑器中,然后点击运行。
SELECT * FROM `PROJECT_ID.my_bq_input_dataset.transaction` WHERE account_id = '1E60OAUNKP84WDKB' AND DATE_TRUNC(book_time, MONTH) = "2022-08-01" ORDER by book_time
此语句会检查账号 ID
1E60OAUNKP84WDKB
在 2022 年 8 月的状态。此账号已与相关方 IDEGS4NJD38JZ8NTL8
相关联。您可以使用 AccountPartyLink 表查找给定账号 ID 的相关方 ID。交易数据显示,在有大额现金存款后,针对单个账号进行频繁的往返交易,这看起来很可疑。这些交易可能表明存在欺诈行为(即将一笔大额资金交易拆分为金额较小的多笔交易)或结构化交易。
将以下 SQL 语句复制到编辑器中,然后点击运行。
SELECT * FROM `PROJECT_ID.my_bq_input_dataset.risk_case_event` WHERE party_id = 'EGS4NJD38JZ8NTL8'
此声明表明,存在导致此方退出的情况。风险支持请求是在可疑活动发生两个月后开始的。
将以下 SQL 语句复制到编辑器中,然后点击运行。
SELECT * FROM `PROJECT_ID.my_bq_output_dataset.my_prediction_results` WHERE party_id = 'EGS4NJD38JZ8NTL8' ORDER BY risk_period_end_time
查看预测结果后,您会发现该方在出现可疑活动后的几个月内,风险信号从几乎为零(请注意指数值)跃升至较高值。您的结果可能与所示结果不同。
风险评分不是概率。风险评分应始终与其他风险评分相对评估。例如,如果其他风险信号较低,一个看似较小的值也可以被视为正例。
将以下 SQL 语句复制到编辑器中,然后点击运行。
SELECT * FROM `PROJECT_ID.my_bq_output_dataset.my_prediction_results_explainability` WHERE party_id = 'EGS4NJD38JZ8NTL8' AND risk_period_end_time = '2022-10-01'
通过查看可解释性结果,您可以看到正确的特征族得分最高。
清理
为避免因本页面中使用的资源导致您的 Google Cloud 账号产生费用,请删除包含这些资源的 Google Cloud 项目。
删除预测结果
如需删除预测结果,请使用 projects.locations.instances.predictionResults.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/predictionResults/my-prediction-results", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除回测结果
如需删除回测结果,请使用 projects.locations.instances.backtestResults.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/backtestResults/my-backtest-results", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除模型
如需删除模型,请使用 projects.locations.instances.models.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/models/my-model", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除引擎配置
如需删除引擎配置,请使用 projects.locations.instances.engineConfigs.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/engineConfigs/my-engine-config", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除数据集
如要删除数据集,请使用 projects.locations.instances.datasets.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance/datasets/my-dataset", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除实例
如需删除实例,请使用 projects.locations.instances.delete
方法。
如需发送请求,请选择以下方式之一:
curl
执行以下命令:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance"
PowerShell
执行以下命令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://financialservices.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/instances/my-instance" | Select-Object -Expand Content
您应该收到类似以下内容的 JSON 响应:
{ "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.financialservices.v1.OperationMetadata", "createTime": CREATE_TIME, "target": "projects/PROJECT_ID/locations/LOCATION/instances/my-instance", "verb": "delete", "requestedCancellation": false, "apiVersion": "v1" }, "done": false }
删除 BigQuery 数据集
bq rm -r -f -d PROJECT_ID:my_bq_input_dataset
bq rm -r -f -d PROJECT_ID:my_bq_output_dataset
删除转移作业配置
列出项目中的转移作业。
Bash
bq ls --transfer_config \ --transfer_location=LOCATION \ --project_id=PROJECT_ID \ --filter="dataSourceIds:cross_region_copy"
PowerShell
bq ls --transfer_config ` --transfer_location=LOCATION ` --project_id=PROJECT_ID ` --filter="dataSourceIds:cross_region_copy"
系统应返回类似如下所示的输出。
name displayName dataSourceId state ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ projects/PROJECT_NUMBER/locations/LOCATION/transferConfigs/TRANSFER_CONFIG_ID Copy the AML sample dataset. cross_region_copy SUCCEEDED
复制整个名称,从
projects/
开始,以TRANSFER_CONFIG_ID
结尾。删除转移配置。
Bash
bq rm --transfer_config TRANSFER_CONFIG_NAME
PowerShell
bq rm --transfer_config TRANSFER_CONFIG_NAME