Document AI 用戶端程式庫

本頁說明如何開始使用 Document AI API 適用的 Cloud 用戶端程式庫。用戶端程式庫可讓您從支援的語言輕鬆存取Google Cloud API。雖然您可以直接向伺服器發出原始要求來使用Google Cloud API,但用戶端程式庫提供簡化功能,可大幅減少您需要編寫的程式碼數量。

如要進一步瞭解 Cloud 用戶端程式庫和舊版 Google API 用戶端程式庫,請參閱用戶端程式庫說明

安裝用戶端程式庫

C++

如要瞭解這個用戶端程式庫的需求和安裝依附元件,請參閱「設定 C++ 開發環境」。

C#

Install-Package Google.Cloud.DocumentAI.V1 -Pre

詳情請參閱設定 C# 開發環境

Go

go get cloud.google.com/go/documentai

詳情請參閱「設定 Go 開發環境」。

Java

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.61.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-document-ai</artifactId>
  </dependency>
</dependencies>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-document-ai:2.71.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-document-ai" % "2.71.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

詳情請參閱「設定 Java 開發環境」。

Node.js

npm install @google-cloud/documentai

詳情請參閱「設定 Node.js 開發環境」。

PHP

composer require google/cloud-document-ai

詳情請參閱「在 Google Cloud 上使用 PHP」。

Python

pip install --upgrade google-cloud-documentai

詳情請參閱「設定 Python 開發環境」。

Ruby

gem install google-cloud-document_ai

詳情請參閱「設定 Ruby 開發環境」。

設定驗證方法

為驗證對 Google Cloud API 的呼叫,用戶端程式庫支援應用程式預設憑證 (ADC);程式庫會在定義的一組位置中尋找憑證,並使用這些憑證驗證對 API 的要求。使用 ADC,您可以在各種環境 (例如本機開發或正式版) 中,為應用程式提供憑證,不必修改應用程式程式碼。

在實際工作環境中,設定 ADC 的方式取決於服務和環境。詳情請參閱「設定應用程式預設憑證」。

在本地開發環境中,您可以使用與 Google 帳戶相關聯的憑證設定 ADC:

  1. After installing the Google Cloud CLI, initialize it by running the following command:

    gcloud init

    If you're using an external identity provider (IdP), you must first sign in to the gcloud CLI with your federated identity.

  2. If you're using a local shell, then create local authentication credentials for your user account:

    gcloud auth application-default login

    You don't need to do this if you're using Cloud Shell.

    If an authentication error is returned, and you are using an external identity provider (IdP), confirm that you have signed in to the gcloud CLI with your federated identity.

    畫面上會顯示登入畫面。登入後,您的憑證會儲存在 ADC 使用的 本機憑證檔案中。

使用用戶端程式庫

以下範例將說明用戶端程式庫的使用方法。

C++


#include "google/cloud/documentai/v1/document_processor_client.h"
#include "google/cloud/location.h"
#include <fstream>
#include <iostream>
#include <string>

int main(int argc, char* argv[]) try {
  if (argc != 5) {
    std::cerr << "Usage: " << argv[0]
              << " project-id location-id processor-id filename (PDF only)\n";
    return 1;
  }

  std::string const location_id = argv[2];
  if (location_id != "us" && location_id != "eu") {
    std::cerr << "location-id must be either 'us' or 'eu'\n";
    return 1;
  }
  auto const location = google::cloud::Location(argv[1], location_id);

  namespace documentai = ::google::cloud::documentai_v1;
  auto client = documentai::DocumentProcessorServiceClient(
      documentai::MakeDocumentProcessorServiceConnection(
          location.location_id()));

  google::cloud::documentai::v1::ProcessRequest req;
  req.set_name(location.FullName() + "/processors/" + argv[3]);
  req.set_skip_human_review(true);
  auto& doc = *req.mutable_raw_document();
  doc.set_mime_type("application/pdf");
  std::ifstream is(argv[4]);
  doc.set_content(std::string{std::istreambuf_iterator<char>(is), {}});

  auto resp = client.ProcessDocument(std::move(req));
  if (!resp) throw std::move(resp).status();
  std::cout << resp->document().text() << "\n";

  return 0;
} catch (google::cloud::Status const& status) {
  std::cerr << "google::cloud::Status thrown: " << status << "\n";
  return 1;
}

C#


using Google.Cloud.DocumentAI.V1;
using Google.Protobuf;
using System;
using System.IO;

public class QuickstartSample
{
    public Document Quickstart(
        string projectId = "your-project-id",
        string locationId = "your-processor-location",
        string processorId = "your-processor-id",
        string localPath = "my-local-path/my-file-name",
        string mimeType = "application/pdf"
    )
    {
        // Create client
        var client = new DocumentProcessorServiceClientBuilder
        {
            Endpoint = $"{locationId}-documentai.googleapis.com"
        }.Build();

        // Read in local file
        using var fileStream = File.OpenRead(localPath);
        var rawDocument = new RawDocument
        {
            Content = ByteString.FromStream(fileStream),
            MimeType = mimeType
        };

        // Initialize request argument(s)
        var request = new ProcessRequest
        {
            Name = ProcessorName.FromProjectLocationProcessor(projectId, locationId, processorId).ToString(),
            RawDocument = rawDocument
        };

        // Make the request
        var response = client.ProcessDocument(request);

        var document = response.Document;
        Console.WriteLine(document.Text);
        return document;
    }
}

Go

import (
	"context"
	"flag"
	"fmt"
	"os"

	documentai "cloud.google.com/go/documentai/apiv1"
	"cloud.google.com/go/documentai/apiv1/documentaipb"
	"google.golang.org/api/option"
)

func main() {
	projectID := flag.String("project_id", "PROJECT_ID", "Cloud Project ID")
	location := flag.String("location", "us", "The Processor location")
	// Create a Processor before running sample
	processorID := flag.String("processor_id", "aaaaaaaa", "The Processor ID")
	filePath := flag.String("file_path", "invoice.pdf", "The path to the file to parse")
	mimeType := flag.String("mime_type", "application/pdf", "The mimeType of the file")
	flag.Parse()

	ctx := context.Background()

	endpoint := fmt.Sprintf("%s-documentai.googleapis.com:443", *location)
	client, err := documentai.NewDocumentProcessorClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		fmt.Println(fmt.Errorf("error creating Document AI client: %w", err))
	}
	defer client.Close()

	// Open local file.
	data, err := os.ReadFile(*filePath)
	if err != nil {
		fmt.Println(fmt.Errorf("os.ReadFile: %w", err))
	}

	req := &documentaipb.ProcessRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/processors/%s", *projectID, *location, *processorID),
		Source: &documentaipb.ProcessRequest_RawDocument{
			RawDocument: &documentaipb.RawDocument{
				Content:  data,
				MimeType: *mimeType,
			},
		},
	}
	resp, err := client.ProcessDocument(ctx, req)
	if err != nil {
		fmt.Println(fmt.Errorf("processDocument: %w", err))
	}

	// Handle the results.
	document := resp.GetDocument()
	fmt.Printf("Document Text: %s", document.GetText())
}

Java

import com.google.cloud.documentai.v1.Document;
import com.google.cloud.documentai.v1.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1.ProcessRequest;
import com.google.cloud.documentai.v1.ProcessResponse;
import com.google.cloud.documentai.v1.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class QuickStart {
  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processorId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    quickStart(projectId, location, processorId, filePath);
  }

  public static void quickStart(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      // Get all of the document text as one big string
      String text = documentResponse.getText();

      // Read the text recognition output from the processor
      System.out.println("The document contains the following paragraphs:");
      Document.Page firstPage = documentResponse.getPages(0);
      List<Document.Page.Paragraph> paragraphs = firstPage.getParagraphsList();

      for (Document.Page.Paragraph paragraph : paragraphs) {
        String paragraphText = getText(paragraph.getLayout().getTextAnchor(), text);
        System.out.printf("Paragraph text:\n%s\n", paragraphText);
      }
    }
  }

  // Extract shards from the text field
  private static String getText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1;

// Instantiates a client
// apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
// const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
const client = new DocumentProcessorServiceClient();

async function quickstart() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);
  const {document} = result;

  // Get all of the document text as one big string
  const {text} = document;

  // Extract shards from the text field
  const getText = textAnchor => {
    if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
      return '';
    }

    // First shard in document doesn't have startIndex property
    const startIndex = textAnchor.textSegments[0].startIndex || 0;
    const endIndex = textAnchor.textSegments[0].endIndex;

    return text.substring(startIndex, endIndex);
  };

  // Read the text recognition output from the processor
  console.log('The document contains the following paragraphs:');
  const [page1] = document.pages;
  const {paragraphs} = page1;

  for (const paragraph of paragraphs) {
    const paragraphText = getText(paragraph.layout.textAnchor);
    console.log(`Paragraph text:\n${paragraphText}`);
  }
}

PHP

# Include the autoloader for libraries installed with Composer.
require __DIR__ . '/vendor/autoload.php';

# Import the Google Cloud client library.
use Google\Cloud\DocumentAI\V1\Client\DocumentProcessorServiceClient;
use Google\Cloud\DocumentAI\V1\RawDocument;
use Google\Cloud\DocumentAI\V1\ProcessRequest;

# TODO(developer): Update the following lines before running the sample.
# Your Google Cloud Platform project ID.
$projectId = 'YOUR_PROJECT_ID';

# Your Processor Location.
$location = 'us';

# Your Processor ID as hexadecimal characters.
# Not to be confused with the Processor Display Name.
$processorId = 'YOUR_PROCESSOR_ID';

# Path for the file to read.
$documentPath = 'resources/invoice.pdf';

# Create Client.
$client = new DocumentProcessorServiceClient();

# Read in file.
$handle = fopen($documentPath, 'rb');
$contents = fread($handle, filesize($documentPath));
fclose($handle);

# Load file contents into a RawDocument.
$rawDocument = (new RawDocument())
    ->setContent($contents)
    ->SetMimeType('application/pdf');

# Get the Fully-qualified Processor Name.
$fullProcessorName = $client->processorName($projectId, $location, $processorId);

# Send a ProcessRequest and get a ProcessResponse.
$request = (new ProcessRequest())
    ->setName($fullProcessorName)
    ->setRawDocument($rawDocument);

$response = $client->processDocument($request);

# Show the text found in the document.
printf('Document Text: %s', $response->getDocument()->getText());

Python

from google.api_core.client_options import ClientOptions
from google.cloud import documentai_v1

# TODO(developer): Create a processor of type "OCR_PROCESSOR".

# TODO(developer): Update and uncomment these variables before running the sample.
# project_id = "MY_PROJECT_ID"

# Processor ID as hexadecimal characters.
# Not to be confused with the Processor Display Name.
# processor_id = "MY_PROCESSOR_ID"

# Processor location. For example: "us" or "eu".
# location = "MY_PROCESSOR_LOCATION"

# Path for file to process.
# file_path = "/path/to/local/pdf"

# Set `api_endpoint` if you use a location other than "us".
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")

# Initialize Document AI client.
client = documentai_v1.DocumentProcessorServiceClient(client_options=opts)

# Get the Fully-qualified Processor path.
full_processor_name = client.processor_path(project_id, location, processor_id)

# Get a Processor reference.
request = documentai_v1.GetProcessorRequest(name=full_processor_name)
processor = client.get_processor(request=request)

# `processor.name` is the full resource name of the processor.
# For example: `projects/{project_id}/locations/{location}/processors/{processor_id}`
print(f"Processor Name: {processor.name}")

# Read the file into memory.
with open(file_path, "rb") as image:
    image_content = image.read()

# Load binary data.
# For supported MIME types, refer to https://cloud.google.com/document-ai/docs/file-types
raw_document = documentai_v1.RawDocument(
    content=image_content,
    mime_type="application/pdf",
)

# Send a request and get the processed document.
request = documentai_v1.ProcessRequest(name=processor.name, raw_document=raw_document)
result = client.process_document(request=request)
document = result.document

# Read the text recognition output from the processor.
# For a full list of `Document` object attributes, reference this page:
# https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
print("The document contains the following text:")
print(document.text)

Ruby

require "google/cloud/document_ai/v1"

##
# Document AI quickstart
#
# @param project_id [String] Your Google Cloud project (e.g. "my-project")
# @param location_id [String] Your Processor Location (e.g. "us")
# @param processor_id [String] Your Processor ID (e.g. "a14dae8f043b60bd")
# @param file_path [String] Path to Local File (e.g. "invoice.pdf")
# @param mime_type [String] Refer to https://cloud.google.com/document-ai/docs/file-types (e.g. "application/pdf")
#
def quickstart project_id:, location_id:, processor_id:, file_path:, mime_type:
  # Create the Document AI client.
  client = ::Google::Cloud::DocumentAI::V1::DocumentProcessorService::Client.new do |config|
    config.endpoint = "#{location_id}-documentai.googleapis.com"
  end

  # Build the resource name from the project.
  name = client.processor_path(
    project: project_id,
    location: location_id,
    processor: processor_id
  )

  # Read the bytes into memory
  content = File.binread file_path

  # Create request
  request = Google::Cloud::DocumentAI::V1::ProcessRequest.new(
    skip_human_review: true,
    name: name,
    raw_document: {
      content: content,
      mime_type: mime_type
    }
  )

  # Process document
  response = client.process_document request

  # Handle response
  puts response.document.text
end

其他資源

C++

以下清單列出與 C++ 用戶端程式庫相關的更多資源連結:

C#

下列清單包含 C# 專用用戶端程式庫的相關資源連結:

Go

下列清單包含與 Go 專用用戶端程式庫相關的更多資源連結:

Java

以下列出與 Java 用戶端程式庫相關的更多資源連結:

Node.js

以下清單列出與 Node.js 用戶端程式庫相關的更多資源連結:

PHP

下列清單包含與 PHP 用戶端程式庫相關的更多資源連結:

Python

以下清單包含適用於 Python 的用戶端程式庫相關資源連結:

Ruby

以下清單提供與 Ruby 用戶端程式庫相關的更多資源連結: