カスタム抽出ツールの目的は、事前トレーニング済みプロセッサを使用できない新しいドキュメント タイプに対して、Document AI ユーザーがカスタム エンティティ抽出ソリューションを構築できるようにすることです。カスタム エクストラクタには、レイアウト対応のディープラーニング モデル(生成 AI とカスタムモデル用)とテンプレートベースのモデルが組み込まれています。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2025-04-01 UTC。"],[[["Custom extractors are designed to identify and extract specific entities from various document types, including menus and resumes, for which pre-trained processors may not exist."],["The custom extractor employs a combination of layout-aware deep learning models and template-based models to accommodate diverse document structures."],["Three training methods are available for the custom extractor: fine-tuning with foundation models, custom models, and template-based models, each suited for different levels of document layout variability."],["Foundation models are the preferred training option for documents with variable layouts, as they typically require fewer training documents compared to other methods."],["The confidence score, ranging from zero to one, indicates the model's certainty in associating a value with a predicted entity, enabling users to set review thresholds and improve model accuracy."]]],[]]