Image Deep Learning VM Image tertentu tersedia sesuai dengan pilihan framework dan prosesor Anda. Saat ini, tersedia image yang mendukung PyTorch dan komputasi berperforma tinggi generik, dengan versi untuk alur kerja yang diaktifkan GPU. Untuk menemukan gambar yang Anda inginkan, lihat tabel di bawah.
Menentukan kelompok image
Pilih kelompok image Deep Learning VM berdasarkan framework dan prosesor yang Anda butuhkan.
Tabel berikut mencantumkan versi terbaru kelompok image, yang disusun berdasarkan jenis framework.
Untuk mendapatkan versi image terbaru, buat instance dengan mereferensikan kelompok image dengan latest
di namanya.
Jika Anda memerlukan versi framework tertentu, buka Versi framework yang didukung.
Framework | Prosesor | Nama kelompok image |
---|---|---|
Dasar | GPU |
common-cu128-ubuntu-2204-nvidia-570 |
PyTorch | GPU | pytorch-2-7-cu128-ubuntu-2204-nvidia-570 |
Memilih sistem operasi
Ubuntu 22.04 adalah OS default dan image dilengkapi dengan driver NVIDIA versi 570.
Image ini dilambangkan dengan akhiran -ubuntu-2204-nvidia-570
dalam nama kelompok image (lihat Mencantumkan semua versi yang tersedia).
Semua image Debian tidak digunakan lagi.
Semua image aktif mendukung akselerator GPU A3 Ultra.
Gambar PyTorch
Kelompok image PyTorch menyediakan distribusi PyTorch dan PyTorch Lightning yang dioptimalkan. Google Cloud
Menentukan versi image
Anda dapat menggunakan kembali gambar yang sama meskipun gambar terbaru lebih baru. Hal ini dapat berguna, misalnya, jika Anda mencoba membuat cluster dan ingin memastikan bahwa semua image yang digunakan untuk membuat instance baru selalu sama. Anda tidak boleh menggunakan nama kelompok image dalam situasi ini karena, jika image terbaru diperbarui, Anda akan memiliki image yang berbeda di beberapa instance dalam cluster.
Sebagai gantinya, Anda dapat menentukan nama persis image, menyertakan nomor versi, lalu menggunakan image tertentu tersebut untuk membuat instance baru di cluster Anda.
Untuk mengetahui nama persis image terbaru, gunakan perintah berikut di Google Cloud CLI dengan terminal pilihan Anda atau di Cloud Shell. Ganti IMAGE_FAMILY dengan nama kelompok image yang ingin Anda ketahui nomor versi terbarunya.
gcloud compute images describe-from-family IMAGE_FAMILY \ --project deeplearning-platform-release
Cari kolom name
dalam output dan gunakan nama image yang diberikan di sana saat membuat instance baru.
Versi framework yang didukung
Deep Learning VM mendukung setiap versi framework berdasarkan jadwal untuk meminimalkan kerentanan keamanan. Tinjau kebijakan dukungan framework Deep Learning VM untuk memahami implikasi dari tanggal akhir dukungan dan akhir ketersediaan.
Jika Anda memerlukan framework atau versi CUDA tertentu, lihat tabel berikut. Guna menemukan VERSION_DATE
tertentu untuk image, lihat Mencantumkan versi yang tersedia.
Versi Base
Semua gambar berbasis CPU telah dihentikan.
Versi framework ML | Versi patch saat ini | Akselerator yang didukung | Akhir patch dan tanggal dukungan | Akhir tanggal ketersediaan | Nama kelompok image |
---|---|---|---|---|---|
Base-cu128 (Python 3.10 / Ubuntu 22.04) | CUDA 12.8 | GPU (CUDA 12.8) | 1 Agustus 2026 | 1 Agustus 2027 | common-cu128-ubuntu-2204-nvidia-570-VERSION_DATE |
Base-CPU (Python 3.10/Debian 11) | Tidak berlaku (T/A) | Khusus CPU | 1 Juli 2024 | 1 Juli 2025 | common-cpu-VERSION_DATE-debian-11 |
Base-cu124 (Python 3.10) | CUDA 12.4 | GPU (CUDA 12.4) | 1 April 2025 | 1 April 2026 | common-cu124-VERSION_DATE-debian-11-py310 |
Base-cu123 (Python 3.10) | CUDA 12.3 | GPU (CUDA 12.3) | 19 Okt 2024 | 19 Okt 2025 | common-cu123-VERSION_DATE-debian-11-py310 |
Base-cu122 (Python 3.10) | CUDA 12.2 | GPU (CUDA 12.2) | 28 Juni 2024 | 28 Juni 2025 | common-cu122-VERSION_DATE-debian-11-py310 |
Base-cu121 (Python 3.10) | CUDA 12.1 | GPU (CUDA 12.1) | 28 Feb 2024 | 28 Februari 2025 | common-cu121-VERSION_DATE-debian-11-py310 |
Base-cu118 (Python 3.10) | CUDA 11.8 | GPU (CUDA 11.8) | 1 Juli 2024 | 1 Juli 2025 | common-cu118-VERSION_DATE-debian-11-py310 |
Base-cu113 (Python 3.10) | CUDA 11.3 | GPU (CUDA 11.3) | 1 Jan 2024 | 1 Jan 2025 | common-cu113-VERSION_DATE-debian-11-py310 |
Base-cu113 (Python 3.7) | CUDA 11.3 | GPU (CUDA 11.3) | 1 Sep 2023 | 1 Sep 2024 | common-cu113-VERSION_DATE-py37 |
Base-cu110 (Python 3.7) | CUDA 11.0 | GPU (CUDA 11.0) | 1 Sep 2023 | 1 Sep 2024 | common-cu110-VERSION_DATE-py37 |
Base-CPU (Python 3.7) | Tidak berlaku (T/A) | Khusus CPU | 1 Sep 2023 | 1 Sep 2024 | common-cpu-VERSION_DATE-debian-10 |
Versi PyTorch
Versi framework ML | Versi patch saat ini | Akselerator yang didukung | Akhir patch dan tanggal dukungan | Akhir tanggal ketersediaan | Nama kelompok image |
---|---|---|---|---|---|
2.7 (Python 3.10) | 2.7.1 | CUDA 12.8 | 1 Agustus 2026 | 1 Agustus 2027 | pytorch-2-7-cu128-ubuntu-2204-nvidia-570-VERSION_DATE |
2.4 (Python 3.10) | 2.4.0 | CUDA 12.4 | 24 Juli 2025 | 24 Juli 2026 | pytorch-2-4-VERSION_DATE-py310 |
2.3 (Python 3.10) | 2.3.0 | CUDA 12.1 | 24 April 2025 | 24 Apr 2026 | pytorch-2-3-VERSION_DATE-py310 |
2.2 (Python 3.10) | 2.2.0 | CUDA 12.1 | 30 Jan 2025 | 30 Jan 2026 | pytorch-2-2-VERSION_DATE-py310 |
2.1 (Python 3.10) | 2.1.0 | CUDA 12.1 | 4 Okt 2024 | 4 Okt 2025 | pytorch-2-1-VERSION_DATE-py310 |
2.0 (Python 3.10) | 2.0.0 | CUDA 11.8 | 15 Mar 2024 | 15 Mar 2025 | pytorch-2-0-VERSION_DATE-py310 |
1.13 (Python 3.10) | 1.13.1 | CUDA 11.3 | 8 Des 2023 | 8 Des 2024 | pytorch-1-13-VERSION_DATE-py310 |
1.13 | 1.13.1 | CUDA 11.3 | 8 Des 2023 | 8 Des 2024 | pytorch-1-13-VERSION_DATE-py37 |
1.12 | 1.12.1 | CUDA 11.3 | 1 Sep 2023 | 1 Sep 2024 | pytorch-1-12-VERSION_DATE-py310 |
Versi TensorFlow
Semua image TensorFlow telah dihentikan.
Versi framework ML | Versi patch saat ini | Akselerator yang didukung | Akhir patch dan tanggal dukungan | Akhir tanggal ketersediaan | Nama kelompok image |
---|---|---|---|---|---|
2.17 (Python 3.10) | 2.17.0 | Khusus CPU | 11 Juli 2025 | 11 Juli 2026 | tf-2-17-cpu-VERSION_DATE-py310 |
2.17 (Python 3.10) | 2.17.0 | GPU (CUDA 12.3) | 11 Juli 2025 | 11 Juli 2026 | tf-2-17-cu123-VERSION_DATE-py310 |
2.16 (Python 3.10) | 2.16.2 | Khusus CPU | 28 Jun 2025 | 28 Jun 2026 | tf-2-16-cpu-VERSION_DATE-py310 |
2.16 (Python 3.10) | 2.16.2 | GPU (CUDA 12.3) | 28 Jun 2025 | 28 Jun 2026 | tf-2-16-cu123-VERSION_DATE-py310 |
2.15 (Python 3.10) | 2.15.0 | Khusus CPU | 14 Nov 2024 | 14 Nov 2025 | tf-2-15-cpu-VERSION_DATE-py310 |
2.15 (Python 3.10) | 2.15.0 | GPU (CUDA 12.2) | 14 Nov 2024 | 14 Nov 2025 | tf-2-15-cu122-VERSION_DATE-py310 |
2.14 (Python 3.10) | 2.14.0 | Khusus CPU | 26 Sep 2024 | 26 Sep 2025 | tf-2-14-cpu-VERSION_DATE-py310 |
2.14 (Python 3.10) | 2.14.0 | GPU (CUDA 11.8) | 26 Sep 2024 | 26 Sep 2025 | tf-2-14-cu118-VERSION_DATE-py310 |
2.13 (Python 3.10) | 2.13.0 | Khusus CPU | 5 Juli 2024 | 5 Juli 2025 | tf-2-13-cpu-VERSION_DATE-py310 |
2.13 (Python 3.10) | 2.13.0 | GPU (CUDA 11.8) | 5 Juli 2024 | 5 Juli 2025 | tf-2-13-cu118-VERSION_DATE-py310 |
2.12 (Python 3.10) | 2.12.0 | Khusus CPU | 30 Juni 2024 | 30 Juni 2025 | tf-2-12-cpu-VERSION_DATE-py310 |
2.12 (Python 3.10) | 2.12.0 | GPU (CUDA 11.8) | 30 Juni 2024 | 30 Juni 2025 | tf-2-12-cu113-VERSION_DATE-py310 |
2.11 (Python 3.10) | 2.11.0 | Khusus CPU | 15 Nov 2022 | 15 Nov 2023 | tf-2-11-cpu-VERSION_DATE-py310 |
2.11 (Python 3.10) | 2.11.0 | GPU (CUDA 11.3) | 15 Nov 2022 | 15 Nov 2023 | tf-2-11-cu113-VERSION_DATE-py310 |
2.11 | 2.11.0 | Khusus CPU | 15 Nov 2023 | 15 Nov 2024 | tf-2-11-cpu-VERSION_DATE-py37 |
2.11 | 2.11.0 | GPU (CUDA 11.3) | 15 Nov 2023 | 15 Nov 2024 | tf-2-11-cu113-VERSION_DATE-py37 |
2.10 | 2.10.1 | Khusus CPU | 15 Nov 2023 | 15 Nov 2024 | tf-2-10-cpu-VERSION_DATE-py37 |
2.10 | 2.10.1 | GPU (CUDA 11.3) | 15 Nov 2023 | 15 Nov 2024 | tf-2-10-cu113-VERSION_DATE-py37 |
2.9 | 2.9.3 | Khusus CPU | 15 Nov 2023 | 15 Nov 2024 | tf-2-9-cpu-VERSION_DATE-py37 |
2.9 | 2.9.3 | GPU (CUDA 11.3) | 15 Nov 2023 | 15 Nov 2024 | tf-2-9-cu113-VERSION_DATE-py37 |
2.8 | 2.8.4 | Khusus CPU | 15 Nov 2023 | 15 Nov 2024 | tf-2-8-cpu-VERSION_DATE-py37 |
2.8 | 2.8.4 | GPU (CUDA 11.3) | 15 Nov 2023 | 15 Nov 2024 | tf-2-8-cu113-VERSION_DATE-py37 |
2.6 (py39) | 2.6.5 | Khusus CPU | 1 Sep 2023 | 1 Sep 2024 | tf-2-6-cpu-VERSION_DATE-py39 |
2.6 (py39) | 2.6.5 | GPU (CUDA 11.3) | 1 Sep 2023 | 1 Sep 2024 | tf-2-6-cu110-VERSION_DATE-py39 |
2.6 (py37) | 2.6.5 | Khusus CPU | 1 Sep 2023 | 1 Sep 2024 | tf-2-6-cpu-VERSION_DATE-py37 |
2.6 (py37) | 2.6.5 | GPU (CUDA 11.3) | 1 Sep 2023 | 1 Sep 2024 | tf-2-6-cu110-VERSION_DATE-py37 |
2.3 | 2.3.4 | Khusus CPU | 1 Sep 2023 | 1 Sep 2024 | tf-2-3-cpu |
2.3 | 2.3.4 | GPU (CUDA 11.3) | 1 Sep 2023 | 1 Sep 2024 | tf-2-3-cu110-VERSION_DATE |
Setelah penghentian penggunaan
Jika gambar mencapai Akhir patch dan tanggal dukungan, gambar tersebut tidak digunakan lagi. Penghentian penggunaan berarti bahwa image ini dihapus dari visibilitas publik dan sebaiknya gunakan image yang didukung untuk membantu memastikan keamanan dan performa.
Jika image Deep Learning VM Anda tidak digunakan lagi atau mencapai akhir ketersediaannya, sebaiknya Anda bermigrasi ke image yang lebih baru dan didukung. Hal ini membantu memastikan Anda terus menerima patch keamanan penting dan fitur terbaru. Pertimbangkan bentuk migrasi berikut:
- Jika ada image yang lebih baru dan didukung dalam kelompok image yang sama, sebaiknya upgrade image Anda ke versi yang didukung dari kelompok image yang sama.
- Jika tidak ada image yang lebih baru dan didukung dalam kelompok image yang sama, pertimbangkan framework yang lebih baru dan didukung dari kelompok image VM yang berbeda.
Menggunakan gambar setelah penghentian penggunaan
Jika Anda harus menggunakan image setelah penghentian penggunaan yang bertentangan dengan rekomendasi keamanan Google dan atas risiko Anda sendiri, Anda harus menentukan image dari kelompok image saat membuat instance VM.
Untuk mencantumkan image dari nama kelompok image setelah tanggal akhir patch dan dukungannya, sertakan tanda --show-deprecated
dalam perintah gcloud compute images list
, atau pilih Tampilkan image yang tidak digunakan lagi saat membuat instance di konsol Google Cloud . Lihat Mencantumkan semua versi yang tersedia menggunakan gcloud CLI.
Untuk membuat instance Deep Learning VM yang menggunakan image yang tidak digunakan lagi, lihat contoh perintah gcloud CLI berikut:
gcloud compute instances create deprecated-tf-vm \ --image=projects/deeplearning-platform-release/global/images/IMAGE_NAME \ --machine-type=n1-standard-4 \ --zone=us-east1-c
Ganti IMAGE_NAME dengan nama image, sebagai berikut:
- Untuk menggunakan image tertentu dalam kelompok image, gunakan nama image, misalnya:
pytorch-2-7-cu128-ubuntu-2204-nvidia-570-v20250728
.
Mencantumkan semua versi yang tersedia menggunakan gcloud CLI
Anda juga dapat mencantumkan semua image Deep Learning VM yang tersedia menggunakan perintah gcloud CLI berikut:
gcloud compute images list \ --project deeplearning-platform-release \ --format="value(NAME)" \ --no-standard-images
Kelompok image diberi nama dalam format
FRAMEWORK-CUDA_VERSION-OS
,
dengan FRAMEWORK
adalah library target,
CUDA_VERSION
adalah versi stack CUDA,
dan OS
menunjukkan sistem operasi dengan
driver NVIDIA yang telah diinstal sebelumnya.
Misalnya, image dari kelompok pytorch-2-7-cu128-ubuntu-2204-nvidia-570
memiliki PyTorch 2.7, CUDA 12.8, dan OS-nya adalah Ubuntu 22.04 dengan driver NVIDIA 570 yang telah diinstal sebelumnya.
Langkah berikutnya
Buat instance Deep Learning VM baru menggunakan Cloud Marketplace atau menggunakan command line.