/*
* Copyright (C) 2021 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.v2.templates;
import static com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer.FailsafeRowPythonExternalUdf.stringMappingFunction;
import static java.nio.charset.StandardCharsets.UTF_8;
import com.google.cloud.teleport.metadata.MultiTemplate;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.cloud.teleport.v2.coders.FailsafeElementCoder;
import com.google.cloud.teleport.v2.common.UncaughtExceptionLogger;
import com.google.cloud.teleport.v2.options.BigQueryCommonOptions.WriteOptions;
import com.google.cloud.teleport.v2.options.BigQueryStorageApiStreamingOptions;
import com.google.cloud.teleport.v2.options.PubsubCommonOptions.ReadSubscriptionOptions;
import com.google.cloud.teleport.v2.options.PubsubCommonOptions.WriteTopicOptions;
import com.google.cloud.teleport.v2.templates.PubsubProtoToBigQuery.PubSubProtoToBigQueryOptions;
import com.google.cloud.teleport.v2.transforms.BigQueryConverters;
import com.google.cloud.teleport.v2.transforms.ErrorConverters;
import com.google.cloud.teleport.v2.transforms.FailsafeElementTransforms.ConvertFailsafeElementToPubsubMessage;
import com.google.cloud.teleport.v2.transforms.JavascriptTextTransformer.FailsafeJavascriptUdf;
import com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer;
import com.google.cloud.teleport.v2.transforms.PythonExternalTextTransformer.RowToStringFailsafeElementFn;
import com.google.cloud.teleport.v2.utils.BigQueryIOUtils;
import com.google.cloud.teleport.v2.utils.GCSUtils;
import com.google.cloud.teleport.v2.utils.SchemaUtils;
import com.google.cloud.teleport.v2.values.FailsafeElement;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Strings;
import com.google.protobuf.Descriptors.Descriptor;
import com.google.protobuf.DynamicMessage;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.util.JsonFormat;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.coders.NullableCoder;
import org.apache.beam.sdk.coders.RowCoder;
import org.apache.beam.sdk.coders.StringUtf8Coder;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write;
import org.apache.beam.sdk.io.gcp.bigquery.WriteResult;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO.Read;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.PCollectionTuple;
import org.apache.beam.sdk.values.TupleTag;
import org.apache.beam.sdk.values.TupleTagList;
import org.apache.beam.sdk.values.TypeDescriptor;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.apache.commons.lang3.ArrayUtils;
/**
* A template for writing <a href="https://developers.google.com/protocol-buffers">Protobuf</a>
* records from Pub/Sub to BigQuery.
*
* <p>Persistent failures are written to a Pub/Sub unprocessed topic.
*
* <p>Check out <a
* href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v2/pubsub-binary-to-bigquery/README_PubSub_Proto_to_BigQuery.md">README</a>
* for instructions on how to use or modify this template.
*/
@MultiTemplate({
@Template(
name = "PubSub_Proto_to_BigQuery_Flex",
category = TemplateCategory.STREAMING,
displayName = "Pub/Sub Proto to BigQuery",
description = {
"The Pub/Sub proto to BigQuery template is a streaming pipeline that ingests proto data from a Pub/Sub subscription into a BigQuery table. "
+ "Any errors that occur while writing to the BigQuery table are streamed into a Pub/Sub unprocessed topic.\n",
"A JavaScript user-defined function (UDF) can be provided to transform data. "
+ "Errors while executing the UDF can be sent to either a separate Pub/Sub topic or the same unprocessed topic as the BigQuery errors."
},
skipOptions = {
"pythonExternalTextTransformGcsPath",
"pythonExternalTextTransformFunctionName"
},
optionsClass = PubSubProtoToBigQueryOptions.class,
flexContainerName = "pubsub-proto-to-bigquery",
documentation =
"https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-proto-to-bigquery",
contactInformation = "https://cloud.google.com/support",
requirements = {
"The input Pub/Sub subscription must exist.",
"The schema file for the Proto records must exist on Cloud Storage.",
"The output Pub/Sub topic must exist.",
"The output BigQuery dataset must exist.",
"If the BigQuery table exists, it must have a schema matching the proto data regardless of the <code>createDisposition</code> value."
},
streaming = true,
supportsAtLeastOnce = true),
@Template(
name = "PubSub_Proto_to_BigQuery_Xlang",
category = TemplateCategory.STREAMING,
displayName = "Pub/Sub Proto to BigQuery with Python UDF",
type = Template.TemplateType.XLANG,
description = {
"The Pub/Sub proto to BigQuery template is a streaming pipeline that ingests proto data from a Pub/Sub subscription into a BigQuery table. "
+ "Any errors that occur while writing to the BigQuery table are streamed into a Pub/Sub unprocessed topic.\n",
"A Python user-defined function (UDF) can be provided to transform data. "
+ "Errors while executing the UDF can be sent to either a separate Pub/Sub topic or the same unprocessed topic as the BigQuery errors."
},
skipOptions = {
"javascriptTextTransformGcsPath",
"javascriptTextTransformFunctionName",
"javascriptTextTransformReloadIntervalMinutes"
},
optionsClass = PubSubProtoToBigQueryOptions.class,
flexContainerName = "pubsub-proto-to-bigquery-xlang",
documentation =
"https://cloud.google.com/dataflow/docs/guides/templates/provided/pubsub-proto-to-bigquery",
contactInformation = "https://cloud.google.com/support",
requirements = {
"The input Pub/Sub subscription must exist.",
"The schema file for the Proto records must exist on Cloud Storage.",
"The output Pub/Sub topic must exist.",
"The output BigQuery dataset must exist.",
"If the BigQuery table exists, it must have a schema matching the proto data regardless of the <code>createDisposition</code> value."
},
streaming = true,
supportsAtLeastOnce = true)
})
public final class PubsubProtoToBigQuery {
private static final TupleTag<FailsafeElement<String, String>> UDF_SUCCESS_TAG = new TupleTag<>();
private static final TupleTag<FailsafeElement<String, String>> UDF_FAILURE_TAG = new TupleTag<>();
private static final FailsafeElementCoder<String, String> FAILSAFE_CODER =
FailsafeElementCoder.of(StringUtf8Coder.of(), StringUtf8Coder.of());
public static void main(String[] args) {
UncaughtExceptionLogger.register();
run(PipelineOptionsFactory.fromArgs(args).as(PubSubProtoToBigQueryOptions.class));
}
/** {@link org.apache.beam.sdk.options.PipelineOptions} for {@link PubsubProtoToBigQuery}. */
public interface PubSubProtoToBigQueryOptions
extends ReadSubscriptionOptions,
WriteOptions,
WriteTopicOptions,
PythonExternalTextTransformer.PythonExternalTextTransformerOptions,
BigQueryStorageApiStreamingOptions {
@TemplateParameter.GcsReadFile(
order = 1,
description = "Cloud Storage Path to the Proto Schema File",
helpText =
"The Cloud Storage location of the self-contained proto schema file. For example,"
+ " `gs://path/to/my/file.pb`. You can generate this file with"
+ " the `--descriptor_set_out` flag of the protoc command."
+ " The `--include_imports` flag guarantees that the file is self-contained.")
@Required
String getProtoSchemaPath();
void setProtoSchemaPath(String value);
@TemplateParameter.Text(
order = 2,
regexes = {"^.+([a-zA-Z][a-zA-Z0-9_]+\\.?)+[a-zA-Z0-9_]$"},
description = "Full Proto Message Name",
helpText =
"The full proto message name. For example, `package.name`."
+ " `MessageName`, where `package.name` is the value provided for the"
+ " `package` statement and not the `java_package` statement.")
@Required
String getFullMessageName();
void setFullMessageName(String value);
@TemplateParameter.Boolean(
order = 3,
optional = true,
description = "Preserve Proto Field Names",
helpText =
"To preserve the original proto field name in JSON, set this property to `true`. "
+ "To use more standard JSON names, set to `false`."
+ " For example, `false` would change `field_name` to `fieldName`. Defaults to: `false`.")
@Default.Boolean(false)
Boolean getPreserveProtoFieldNames();
void setPreserveProtoFieldNames(Boolean value);
@TemplateParameter.GcsReadFile(
order = 4,
optional = true,
description = "BigQuery Table Schema Path",
helpText =
"The Cloud Storage path to the BigQuery schema path. "
+ "If this value isn't provided, then the schema is inferred from the Proto schema.",
example = "gs://MyBucket/bq_schema.json")
String getBigQueryTableSchemaPath();
void setBigQueryTableSchemaPath(String value);
@TemplateParameter.PubsubTopic(
order = 5,
optional = true,
description = "Pub/Sub output topic for UDF failures",
helpText =
"The Pub/Sub topic storing the UDF errors."
+ " If this value isn't provided, UDF errors are sent to the same topic as `outputTopic`.",
example = "projects/your-project-id/topics/your-topic-name")
String getUdfOutputTopic();
void setUdfOutputTopic(String udfOutputTopic);
// Hide the UseStorageWriteApiAtLeastOnce in the UI, because it will automatically be turned
// on when pipeline is running on ALO mode and using the Storage Write API
@TemplateParameter.Boolean(
order = 6,
optional = true,
parentName = "useStorageWriteApi",
parentTriggerValues = {"true"},
description = "Use at at-least-once semantics in BigQuery Storage Write API",
helpText =
"When using the Storage Write API, specifies the write semantics."
+ " To use at-least-once semantics (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), set this parameter to true`. To use exactly-once semantics, set the parameter to `false`."
+ " This parameter applies only when `useStorageWriteApi` is `true`. The default value is `false`.",
hiddenUi = true)
@Default.Boolean(false)
@Override
Boolean getUseStorageWriteApiAtLeastOnce();
void setUseStorageWriteApiAtLeastOnce(Boolean value);
}
/** Runs the pipeline and returns the results. */
private static PipelineResult run(PubSubProtoToBigQueryOptions options) {
BigQueryIOUtils.validateBQStorageApiOptionsStreaming(options);
Pipeline pipeline = Pipeline.create(options);
Descriptor descriptor = getDescriptor(options);
PCollection<String> maybeForUdf =
pipeline
.apply("Read From Pubsub", readPubsubMessages(options, descriptor))
.apply("Dynamic Message to TableRow", new ConvertDynamicProtoMessageToJson(options));
WriteResult writeResult =
runUdf(maybeForUdf, options)
.apply("Write to BigQuery", writeToBigQuery(options, descriptor));
BigQueryIOUtils.writeResultToBigQueryInsertErrors(writeResult, options)
.apply(
"Create Error Payload",
ErrorConverters.BigQueryInsertErrorToPubsubMessage.<String>newBuilder()
.setPayloadCoder(StringUtf8Coder.of())
.setTranslateFunction(BigQueryConverters::tableRowToJson)
.build())
.apply("Write Failed BQ Records", PubsubIO.writeMessages().to(options.getOutputTopic()));
return pipeline.run();
}
/** Gets the {@link Descriptor} for the message type in the Pub/Sub topic. */
@VisibleForTesting
static Descriptor getDescriptor(PubSubProtoToBigQueryOptions options) {
String schemaPath = options.getProtoSchemaPath();
String messageName = options.getFullMessageName();
Descriptor descriptor = SchemaUtils.getProtoDomain(schemaPath).getDescriptor(messageName);
if (descriptor == null) {
throw new IllegalArgumentException(
messageName + " is not a recognized message in " + schemaPath);
}
return descriptor;
}
/** Returns the {@link PTransform} for reading Pub/Sub messages. */
private static Read<DynamicMessage> readPubsubMessages(
PubSubProtoToBigQueryOptions options, Descriptor descriptor) {
return PubsubIO.readProtoDynamicMessages(descriptor)
.fromSubscription(options.getInputSubscription())
.withDeadLetterTopic(options.getOutputTopic());
}
/**
* Writes messages to BigQuery, creating the table if necessary and allowed in {@code options}.
*
* <p>The BigQuery schema will be inferred from {@code descriptor} unless a JSON schema path is
* specified in {@code options}.
*/
@VisibleForTesting
static Write<String> writeToBigQuery(
PubSubProtoToBigQueryOptions options, Descriptor descriptor) {
Write<String> write =
BigQueryConverters.<String>createWriteTransform(options)
.withFormatFunction(BigQueryConverters::convertJsonToTableRow);
String schemaPath = options.getBigQueryTableSchemaPath();
if (Strings.isNullOrEmpty(schemaPath)) {
return write.withSchema(
SchemaUtils.createBigQuerySchema(descriptor, options.getPreserveProtoFieldNames()));
} else {
return write.withJsonSchema(GCSUtils.getGcsFileAsString(schemaPath));
}
}
/** {@link PTransform} that handles converting {@link PubsubMessage} values to JSON. */
private static class ConvertDynamicProtoMessageToJson
extends PTransform<PCollection<DynamicMessage>, PCollection<String>> {
private final boolean preserveProtoName;
private ConvertDynamicProtoMessageToJson(PubSubProtoToBigQueryOptions options) {
this.preserveProtoName = options.getPreserveProtoFieldNames();
}
@Override
public PCollection<String> expand(PCollection<DynamicMessage> input) {
return input.apply(
"Map to JSON",
MapElements.into(TypeDescriptors.strings())
.via(
message -> {
try {
JsonFormat.Printer printer = JsonFormat.printer();
return preserveProtoName
? printer.preservingProtoFieldNames().print(message)
: printer.print(message);
} catch (InvalidProtocolBufferException e) {
throw new RuntimeException(e);
}
}));
}
}
/**
* Handles running the UDF.
*
* <p>If {@code options} is configured so as not to run the UDF, then the UDF will not be called.
*
* <p>This may add a branch to the pipeline for outputting failed UDF records to an unprocessed
* topic.
*
* @param jsonCollection {@link PCollection} of JSON strings for use as input to the UDF
* @param options the options containing info on running the UDF
* @return the {@link PCollection} of UDF output as JSON or {@code jsonCollection} if UDF not
* called
*/
@VisibleForTesting
static PCollection<String> runUdf(
PCollection<String> jsonCollection, PubSubProtoToBigQueryOptions options) {
boolean useJavascriptUdf = !Strings.isNullOrEmpty(options.getJavascriptTextTransformGcsPath());
boolean usePythonUdf = !Strings.isNullOrEmpty(options.getPythonExternalTextTransformGcsPath());
// In order to avoid generating a graph that makes it look like a UDF was called when none was
// intended, simply return the input as "success" output.
if (!useJavascriptUdf && !usePythonUdf) {
return jsonCollection;
}
// For testing purposes, we need to do this check before creating the PTransform rather than
// in `expand`. Otherwise, we get a NullPointerException due to the PTransform not returning
// a value.
if (useJavascriptUdf
&& Strings.isNullOrEmpty(options.getJavascriptTextTransformFunctionName())) {
throw new IllegalArgumentException(
"JavaScript function name cannot be null or empty if file is set");
}
if (usePythonUdf
&& Strings.isNullOrEmpty(options.getPythonExternalTextTransformFunctionName())) {
throw new IllegalArgumentException(
"Python function name cannot be null or empty if file is set");
}
if (usePythonUdf && useJavascriptUdf) {
throw new IllegalArgumentException(
"Either javascript or Python gcs path must be provided, but not both.");
}
PCollectionTuple maybeSuccess;
if (usePythonUdf) {
maybeSuccess = jsonCollection.apply("Run UDF", new RunPythonUdf(options));
} else {
maybeSuccess = jsonCollection.apply("Run UDF", new RunUdf(options));
}
maybeSuccess
.get(UDF_FAILURE_TAG)
.setCoder(FAILSAFE_CODER)
.apply(
"Get UDF Failures",
ConvertFailsafeElementToPubsubMessage.<String, String>builder()
.setOriginalPayloadSerializeFn(s -> ArrayUtils.toObject(s.getBytes(UTF_8)))
.setErrorMessageAttributeKey("udfErrorMessage")
.build())
.apply("Write Failed UDF", writeUdfFailures(options));
return maybeSuccess
.get(UDF_SUCCESS_TAG)
.setCoder(FAILSAFE_CODER)
.apply(
"Get UDF Output",
MapElements.into(TypeDescriptors.strings()).via(FailsafeElement::getPayload))
.setCoder(NullableCoder.of(StringUtf8Coder.of()));
}
/** {@link PTransform} that calls a UDF and returns both success and failure output. */
private static class RunUdf extends PTransform<PCollection<String>, PCollectionTuple> {
private final PubSubProtoToBigQueryOptions options;
RunUdf(PubSubProtoToBigQueryOptions options) {
this.options = options;
}
@Override
public PCollectionTuple expand(PCollection<String> input) {
return input
.apply("Prepare Failsafe UDF", makeFailsafe())
.setCoder(FAILSAFE_CODER)
.apply(
"Call UDF",
FailsafeJavascriptUdf.<String>newBuilder()
.setFileSystemPath(options.getJavascriptTextTransformGcsPath())
.setFunctionName(options.getJavascriptTextTransformFunctionName())
.setReloadIntervalMinutes(
options.getJavascriptTextTransformReloadIntervalMinutes())
.setSuccessTag(UDF_SUCCESS_TAG)
.setFailureTag(UDF_FAILURE_TAG)
.build());
}
private static MapElements<String, FailsafeElement<String, String>> makeFailsafe() {
return MapElements.into(new TypeDescriptor<FailsafeElement<String, String>>() {})
.via((String json) -> FailsafeElement.of(json, json));
}
}
/** {@link PTransform} that calls a python UDF and returns both success and failure output. */
private static class RunPythonUdf extends PTransform<PCollection<String>, PCollectionTuple> {
private final PubSubProtoToBigQueryOptions options;
RunPythonUdf(PubSubProtoToBigQueryOptions options) {
this.options = options;
}
@Override
public PCollectionTuple expand(PCollection<String> input) {
return input
.apply("Prepare Failsafe row", stringMappingFunction())
.setCoder(
RowCoder.of(PythonExternalTextTransformer.FailsafeRowPythonExternalUdf.ROW_SCHEMA))
.apply(
"InvokeUDF",
PythonExternalTextTransformer.FailsafePythonExternalUdf.newBuilder()
.setFileSystemPath(options.getPythonExternalTextTransformGcsPath())
.setFunctionName(options.getPythonExternalTextTransformFunctionName())
.build())
.apply(
"MapRowsToFailsafeElements",
ParDo.of(new RowToStringFailsafeElementFn(UDF_SUCCESS_TAG, UDF_FAILURE_TAG))
.withOutputTags(UDF_SUCCESS_TAG, TupleTagList.of(UDF_FAILURE_TAG)));
}
}
/**
* Returns a {@link PubsubIO.Write} configured to write UDF failures to the appropriate output
* topic.
*/
private static PubsubIO.Write<PubsubMessage> writeUdfFailures(
PubSubProtoToBigQueryOptions options) {
PubsubIO.Write<PubsubMessage> write = PubsubIO.writeMessages();
return Strings.isNullOrEmpty(options.getUdfOutputTopic())
? write.to(options.getOutputTopic())
: write.to(options.getUdfOutputTopic());
}
}