Integrationen in Bigtable

Auf dieser Seite werden die Integrationen zwischen Bigtable und anderen Produkten und Diensten beschrieben.

Google Cloud -Dienste

In diesem Abschnitt werden die Google Cloud -Dienste beschrieben, die sich in Bigtable einbinden lassen.

BigQuery

BigQuery ist das vollständig verwaltete, kostengünstige Data Warehouse für Analysen im Petabyte-Bereich von Google. Sie können BigQuery mit Bigtable für die folgenden Zwecke verwenden:

  • Sie können eine externe BigQuery-Tabelle erstellen und dann verwenden, um Ihre Bigtable-Tabelle abzufragen und die Daten mit anderen BigQuery-Tabellen zu verknüpfen. Weitere Informationen finden Sie unter Bigtable-Daten abfragen.

  • Sie können Ihre BigQuery-Daten in eine Bigtable-Tabelle exportieren, indem Sie Reverse-ETL (RETL) von BigQuery nach Bigtable verwenden. Weitere Informationen finden Sie unter Daten nach Bigtable exportieren.

Cloud Asset Inventory

Cloud Asset Inventory, das Inventardienste auf Basis einer Zeitreihen-Datenbank bietet, unterstützt Bigtable-Ressourcentypen und gibt diese aus. Eine vollständige Liste finden Sie unter Unterstützte Ressourcentypen.

Dataplex Universal Catalog

In Dataplex Universal Catalog und Data Catalog (eingestellt) werden automatisch Metadaten zu Bigtable-Ressourcen katalogisiert. Katalogisierte Informationen zu Ihren Daten können die Analyse, die Wiederverwendung von Daten, die Anwendungsentwicklung und die Datenverwaltung erleichtern. Weitere Informationen finden Sie unter Datenassets mit Data Catalog verwalten.

Dataflow

Dataflow ist ein Cloud-Dienst und ein Programmiermodell für die Verarbeitung von großen Datenmengen. Dataflow unterstützt sowohl Batch- als auch Streamingverarbeitung. Sie können mit Dataflow Daten verarbeiten, die in Bigtable gespeichert sind, oder die Ausgabe Ihrer Dataflow-Pipeline speichern. Sie können Dataflow-Vorlagen auch zum Exportieren und Importieren Ihrer Daten als Avro-, Parquet- oder SequenceFiles-Dateien verwenden.

Eine Einführung finden Sie unter Bigtable Beam Connector.

Sie können Bigtable auch als Key-Value-Lookup verwenden, um die Daten in einer Pipeline anzureichern. Eine Übersicht finden Sie unter Streamingdaten anreichern. Ein Tutorial finden Sie unter Mit Apache Beam und Bigtable Daten anreichern.

Dataproc

Dataproc stellt Apache Hadoop und verwandte Produkte als verwaltete Dienste in die Cloud. Mit Dataproc können Sie Hadoop-Jobs ausführen, die in Bigtable schreiben und lesen.

Ein Beispiel für einen Hadoop-MapReduce-Job, der Bigtable verwendet, finden Sie im Verzeichnis /java/dataproc-wordcount im GitHub-Repository GoogleCloudPlatform/cloud-bigtable-examples.

Die Vektorsuche in Vertex AI ist eine Technologie, die in Milliarden von semantisch ähnlichen oder semantisch verwandten Elementen suchen kann. Er ist nützlich für die Implementierung von Empfehlungssystemen, Chatbots und Textklassifizierung.

Sie können Bigtable verwenden, um Vektoreinbettungen zu speichern, in einen Vector Search-Index zu exportieren und dann den Index nach ähnlichen Elementen abzufragen. Eine Anleitung, die einen Beispielworkflow zeigt, finden Sie im GitHub-Repository workflows-demos unter Bigtable to Vertex AI Vector Search Export.

Sie können auch Streaming-Updates senden, um den Vektorsuchindex in Echtzeit mit Bigtable zu synchronisieren. Weitere Informationen finden Sie in der Vorlage für Bigtable-Änderungsstreams zur Vektorsuche.

Big Data

In diesem Abschnitt werden Big Data-Produkte beschrieben, die sich in Bigtable integrieren lassen.

Apache Beam

Apache Beam ist ein einheitliches Modell zum Definieren von Batch- und Streamingpipelines zur parallelen Datenverarbeitung. Mit dem Bigtable Beam-Connector (BigtableIO) können Sie Batch- und Streaming-Vorgänge für Bigtable-Daten in einer Pipeline ausführen.

Ein Tutorial zur Verwendung des Bigtable-Beam-Connectors zum Bereitstellen einer Datenpipeline in Dataflow finden Sie unter Bigtable-Änderungsstream verarbeiten.

Apache Hadoop

Apache Hadoop ist ein Framework, das die verteilte Verarbeitung großer Datenmengen auf Clustern von Computern ermöglicht. Sie können mit Dataproc einen Hadoop-Cluster erstellen und dann MapReduce-Jobs ausführen, die in Bigtable lesen und schreiben.

Ein Beispiel für einen Hadoop-MapReduce-Job, der Bigtable verwendet, finden Sie im Verzeichnis /java/dataproc-wordcount im GitHub-Repository GoogleCloudPlatform/cloud-bigtable-examples.

StreamSets Data Collector

StreamSets Data Collector ist eine Datenstreaminganwendung, die Sie für das Schreiben von Daten in Bigtable konfigurieren können. StreamSets bietet in seinem GitHub-Repository unter streamsets/datacollector eine Bigtable-Bibliothek.

Graphdatenbanken

In diesem Abschnitt werden Graphdatenbanken beschrieben, die sich in Bigtable integrieren lassen.

HGraphDB

HGraphDB ist eine Clientschicht für die Verwendung von Apache HBase oder Bigtable als Graphdatenbank. Sie implementiert die Apache TinkerPop3-Oberflächen.

Weitere Informationen zum Verwenden von HGraphDB mit Unterstützung für Bigtable finden Sie in der HGraphDB-Dokumentation.

JanusGraph

JanusGraph ist eine skalierbare Graphdatenbank. Sie ist für die Speicherung und Abfrage von Grafiken mit Hunderten von Milliarden Kanten und Eckpunkten optimiert.

Weitere Informationen zur Verwendung von JanusGraph mit Bigtable-Unterstützung finden Sie unter JanusGraph mit Bigtable ausführen oder in der JanusGraph-Dokumentation.

Infrastrukturverwaltung

In diesem Abschnitt werden die Tools zur Infrastrukturverwaltung beschrieben, die sich in Bigtable integrieren lassen.

Pivotal Cloud Foundry

Pivotal Cloud Foundry ist eine Plattform zur Anwendungsentwicklung und -bereitstellung, die die Möglichkeit bietet, eine Anwendung an Bigtable zu binden.

Terraform

Terraform ist ein Open-Source-Tool, das APIs in deklarative Konfigurationsdateien codiert. Diese Dateien können für Teammitglieder freigegeben, als Code behandelt, bearbeitet, überprüft und versioniert werden.

Weitere Informationen zur Verwendung von Bigtable mit Terraform finden Sie in der Terraform-Dokumentation unter Bigtable-Instanz und Bigtable-Tabelle.

Zeitachsen-Datenbanken und -Monitoring

In diesem Abschnitt werden Zeitachsen-Datenbanken und -Überwachungstools beschrieben, die sich in Bigtable integrieren lassen.

OpenTSDB

OpenTSDB ist eine Zeitachsen-Datenbank, die Bigtable zum Speichern verwenden kann. Die OpenTSDB-Dokumentation enthält Informationen für den Einstieg.