Reconhecimento óptico de caracteres (OCR)
A API Vision detecta e extrai texto de imagens. Há dois recursos de anotação compatíveis com o reconhecimento óptico de caracteres (OCR):
TEXT_DETECTION
detecta e extrai texto de qualquer imagem. Por exemplo, uma foto pode ter uma placa de rua ou de trânsito. O JSON inclui toda a string extraída, bem como cada palavra e caixas delimitadoras.DOCUMENT_TEXT_DETECTION
também extrai texto de uma imagem, mas a resposta é otimizada para textos e documentos densos. O JSON inclui informações de página, bloco, parágrafo, palavra e quebra de linha.Saiba mais sobre
DOCUMENT_TEXT_DETECTION
para extração de texto escrito à mão e extração de texto de arquivos (PDF/TIFF).
Faça um teste
Se você começou a usar o Google Cloud agora, crie uma conta para avaliar o desempenho da Cloud Vision em situações reais. Clientes novos também recebem US$ 300 em créditos para executar, testar e implantar cargas de trabalho.
Faça uma avaliação gratuita do Cloud VisionSolicitações de detecção de texto
Configurar o projeto do Google Cloud e a autenticação
Se você ainda não criou um projeto do Google Cloud , faça isso agora. Expanda esta seção para instruções.
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
Ao usar um provedor de identidade (IdP) externo, primeiro faça login na gcloud CLI com sua identidade federada.
-
Para inicializar a gcloud CLI, execute o seguinte comando:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
Ao usar um provedor de identidade (IdP) externo, primeiro faça login na gcloud CLI com sua identidade federada.
-
Para inicializar a gcloud CLI, execute o seguinte comando:
gcloud init
- BASE64_ENCODED_IMAGE: a representação Base64 (string ASCII) dos dados da imagem binária. A string precisa ser semelhante à seguinte:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- PROJECT_ID: o ID do projeto do Google Cloud .
- CLOUD_STORAGE_IMAGE_URI: o caminho para um arquivo de imagem válido em um bucket do Cloud Storage. Você precisa ter, pelo menos, privilégios de leitura para o arquivo.
Exemplo:
gs://cloud-samples-data/vision/ocr/sign.jpg
- PROJECT_ID: o ID do projeto do Google Cloud .
us
: somente nos EUAeu
: União Europeia- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:annotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/images:asyncBatchAnnotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:annotate
- https://eu-vision.googleapis.com/v1/projects/PROJECT_ID/locations/eu/files:asyncBatchAnnotate
- REGION_ID: um dos identificadores de local regionais válidos
us
: somente nos EUAeu
: União Europeia
- CLOUD_STORAGE_IMAGE_URI: o caminho para um arquivo de imagem válido em um bucket do Cloud Storage. Você precisa ter, pelo menos, privilégios de leitura para o arquivo.
Exemplo:
gs://cloud-samples-data/vision/ocr/sign.jpg
- PROJECT_ID: o ID do projeto do Google Cloud .
Detectar texto em uma imagem local
Use a API Vision para detectar atributos em um arquivo de imagem local.
Para solicitações REST, envie o conteúdo do arquivo de imagem como uma string codificada em base64 no corpo da solicitação.
Para solicitações gcloud
e da biblioteca de cliente, especifique o caminho para uma imagem local na
sua solicitação.
gcloud
Para realizar a detecção de texto, use o comando
gcloud ml vision detect-text
,
conforme mostrado neste exemplo:
gcloud ml vision detect-text ./path/to/local/file.jpg
REST
Antes de usar os dados da solicitação, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON da solicitação:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando abaixo:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK
e a resposta no formato JSON.
Uma resposta de TEXT_DETECTION
inclui a frase detectada, sua caixa delimitadora,
bem como cada palavra e suas caixas delimitadoras.
Resposta
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
Antes de testar este exemplo, siga as instruções de configuração do Go no guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
// detectText gets text from the Vision API for an image at the given file path.
func detectText(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
annotations, err := client.DetectTexts(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No text found.")
} else {
fmt.Fprintln(w, "Text:")
for _, annotation := range annotations {
fmt.Fprintf(w, "%q\n", annotation.Description)
}
}
return nil
}
Java
Antes de testar este exemplo, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectText {
public static void detectText() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "path/to/your/image/file.jpg";
detectText(filePath);
}
// Detects text in the specified image.
public static void detectText(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
System.out.format("Text: %s%n", annotation.getDescription());
System.out.format("Position : %s%n", annotation.getBoundingPoly());
}
}
}
}
}
Node.js
Antes de testar este exemplo, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = 'Local image file, e.g. /path/to/image.png';
// Performs text detection on the local file
const [result] = await client.textDetection(fileName);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));
Python
Antes de testar este exemplo, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
def detect_text(path):
"""Detects text in the file."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
response = client.text_detection(image=image)
texts = response.text_annotations
print("Texts:")
for text in texts:
print(f'\n"{text.description}"')
vertices = [
f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices
]
print("bounds: {}".format(",".join(vertices)))
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Outras linguagens
C#: siga as instruções de configuração do C# na página das bibliotecas de cliente e acesse a documentação de referência do Vision para .NET.
PHP: siga as instruções de configuração do PHP na página das bibliotecas de cliente e acesse a documentação de referência do Vision para PHP.
Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.
Detectar texto em uma imagem remota
É possível usar a API Vision para realizar a detecção de recursos em um arquivo de imagem remoto localizado no Cloud Storage ou na Web. Para enviar uma solicitação de arquivo remoto, especifique o URL da Web do arquivo ou o URI do Cloud Storage no corpo da solicitação.
gcloud
Para realizar a detecção de texto, use o comando
gcloud ml vision detect-text
,
conforme mostrado neste exemplo:
gcloud ml vision detect-text gs://cloud-samples-data/vision/ocr/sign.jpg
REST
Antes de usar os dados da solicitação, faça as seguintes substituições:
Método HTTP e URL:
POST https://vision.googleapis.com/v1/images:annotate
Corpo JSON da solicitação:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando abaixo:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK
e a resposta no formato JSON.
Uma resposta de TEXT_DETECTION
inclui a frase detectada, sua caixa delimitadora,
bem como cada palavra e suas caixas delimitadoras.
Resposta
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
Antes de testar este exemplo, siga as instruções de configuração do Go no guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
// detectText gets text from the Vision API for an image at the given file path.
func detectTextURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
annotations, err := client.DetectTexts(ctx, image, nil, 10)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No text found.")
} else {
fmt.Fprintln(w, "Text:")
for _, annotation := range annotations {
fmt.Fprintf(w, "%q\n", annotation.Description)
}
}
return nil
}
Java
Antes de testar este exemplo, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
public class DetectTextGcs {
public static void detectTextGcs() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
detectTextGcs(filePath);
}
// Detects text in the specified remote image on Google Cloud Storage.
public static void detectTextGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feat = Feature.newBuilder().setType(Feature.Type.TEXT_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
System.out.format("Error: %s%n", res.getError().getMessage());
return;
}
// For full list of available annotations, see http://g.co/cloud/vision/docs
for (EntityAnnotation annotation : res.getTextAnnotationsList()) {
System.out.format("Text: %s%n", annotation.getDescription());
System.out.format("Position : %s%n", annotation.getBoundingPoly());
}
}
}
}
}
Node.js
Antes de testar este exemplo, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following lines before running the sample.
*/
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';
// Performs text detection on the gcs file
const [result] = await client.textDetection(`gs://${bucketName}/${fileName}`);
const detections = result.textAnnotations;
console.log('Text:');
detections.forEach(text => console.log(text));
Python
Antes de testar este exemplo, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
def detect_text_uri(uri):
"""Detects text in the file located in Google Cloud Storage or on the Web."""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
response = client.text_detection(image=image)
texts = response.text_annotations
print("Texts:")
for text in texts:
print(f'\n"{text.description}"')
vertices = [
f"({vertex.x},{vertex.y})" for vertex in text.bounding_poly.vertices
]
print("bounds: {}".format(",".join(vertices)))
if response.error.message:
raise Exception(
"{}\nFor more info on error messages, check: "
"https://cloud.google.com/apis/design/errors".format(response.error.message)
)
Outras linguagens
C#: siga as instruções de configuração do C# na página das bibliotecas de cliente e acesse a documentação de referência do Vision para .NET.
PHP: siga as instruções de configuração do PHP na página das bibliotecas de cliente e acesse a documentação de referência do Vision para PHP.
Ruby Siga estas instruções:Instruções de configuração do Ruby na página das bibliotecas de cliente e, em seguida, visite oDocumentação de referência do Vision para Ruby.
Especificar o idioma (opcional)
Os dois tipos de solicitação de OCR são compatíveis com um ou mais
languageHints
que especificam o idioma de qualquer texto da imagem. No entanto, um valor vazio geralmente produz os melhores resultados, porque a omissão de um valor permite a detecção automática de idioma. Para idiomas com base no alfabeto latino,
não é necessário definir languageHints
. Em casos raros, quando o idioma do
texto da
imagem é conhecido, definir uma dica ajuda a conseguir melhores resultados, mas poderá ser um grande problema
se a dica estiver errada. A detecção de texto retornará um erro se um ou mais dos idiomas especificados não forem compatíveis.
Se você optar por fornecer uma dica de idioma, modifique o corpo da solicitação
(arquivo request.json
) para fornecer a string de um dos idiomas compatíveis
no campo imageContext.languageHints
, conforme mostrado no exemplo a seguir:
{ "requests": [ { "image": { "source": { "imageUri": "IMAGE_URL" } }, "features": [ { "type": "DOCUMENT_TEXT_DETECTION" } ], "imageContext": { "languageHints": ["en-t-i0-handwrit"] } } ] }
Suporte multirregional
Já é possível especificar o armazenamento de dados e o processamento de OCR em nível de continente. Estas regiões são compatíveis atualmente:
Locais
O Cloud Vision oferece a você um controle sobre onde os recursos do seu projeto são armazenados e processados. Especificamente, é possível configurar o Cloud Vision para armazenar e processar os dados somente na União Europeia.
Por padrão, o Cloud Vision armazena e processa recursos em um local global, o que significa que o Cloud Vision não garante que os recursos vão permanecer em um determinado local ou região. Se você escolher a União Europeia como local, o Google vai armazenar os dados e processar somente na União Europeia. Você e seus usuários podem acessar os dados de qualquer local.
Como definir o local usando a API
A API Vision aceita um endpoint de API global (vision.googleapis.com
), bem como dois endpoints baseados em região: um endpoint da União Europeia (eu-vision.googleapis.com
) e um endpoint dos Estados Unidos (us-vision.googleapis.com
). Use esses endpoints para processamento específico da região. Por exemplo, para armazenar e processar os dados somente na União Europeia, use o URI eu-vision.googleapis.com
no lugar de vision.googleapis.com
para as chamadas da API REST:
Para armazenar e processar seus dados somente nos Estados Unidos, use o endpoint dos EUA (us-vision.googleapis.com
) com os métodos anteriores.
Como definir o local usando as bibliotecas de cliente
Por padrão, as bibliotecas cliente da API Vision acessam o endpoint global da API (vision.googleapis.com
). Para armazenar e processar os dados somente na
União Europeia, você precisa definir explicitamente o endpoint
(eu-vision.googleapis.com
). Os exemplos de código abaixo mostram como definir
essa configuração.
REST
Antes de usar os dados da solicitação, faça as seguintes substituições:
Método HTTP e URL:
POST https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate
Corpo JSON da solicitação:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "type": "TEXT_DETECTION" } ] } ] }
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando abaixo:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate"
PowerShell
Salve o corpo da solicitação em um arquivo com o nome request.json
e execute o comando a seguir:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://REGION_ID-vision.googleapis.com/v1/projects/PROJECT_ID/locations/REGION_ID/images:annotate" | Select-Object -Expand Content
Quando a solicitação é bem-sucedida, o servidor retorna um código de status HTTP 200 OK
e a resposta no formato JSON.
Uma resposta de TEXT_DETECTION
inclui a frase detectada, sua caixa delimitadora,
bem como cada palavra e suas caixas delimitadoras.
Resposta
{ "responses": [ { "textAnnotations": [ { "locale": "en", "description": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n", "boundingPoly": { "vertices": [ { "x": 341, "y": 828 }, { "x": 2249, "y": 828 }, { "x": 2249, "y": 1993 }, { "x": 341, "y": 1993 } ] } }, { "description": "WAITING?", "boundingPoly": { "vertices": [ { "x": 352, "y": 828 }, { "x": 2248, "y": 911 }, { "x": 2238, "y": 1148 }, { "x": 342, "y": 1065 } ] } }, { "description": "PLEASE", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1233 }, { "x": 1907, "y": 1263 }, { "x": 1902, "y": 1383 }, { "x": 1205, "y": 1353 } ] } }, { "description": "TURN", "boundingPoly": { "vertices": [ { "x": 1210, "y": 1418 }, { "x": 1730, "y": 1441 }, { "x": 1724, "y": 1564 }, { "x": 1205, "y": 1541 } ] } }, { "description": "OFF", "boundingPoly": { "vertices": [ { "x": 1792, "y": 1443 }, { "x": 2128, "y": 1458 }, { "x": 2122, "y": 1581 }, { "x": 1787, "y": 1566 } ] } }, { "description": "YOUR", "boundingPoly": { "vertices": [ { "x": 1219, "y": 1603 }, { "x": 1746, "y": 1629 }, { "x": 1740, "y": 1759 }, { "x": 1213, "y": 1733 } ] } }, { "description": "ENGINE", "boundingPoly": { "vertices": [ { "x": 1222, "y": 1771 }, { "x": 1944, "y": 1834 }, { "x": 1930, "y": 1992 }, { "x": 1208, "y": 1928 } ] } } ], "fullTextAnnotation": { "pages": [ ... ] }, "paragraphs": [ ... ] }, "words": [ ... }, "symbols": [ ... } ] } ], "blockType": "TEXT" }, ... ] } ], "text": "WAITING?\nPLEASE\nTURN OFF\nYOUR\nENGINE\n" } } ] }
Go
Antes de testar este exemplo, siga as instruções de configuração do Go no guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionGo.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
import (
"context"
"fmt"
vision "cloud.google.com/go/vision/apiv1"
"google.golang.org/api/option"
)
// setEndpoint changes your endpoint.
func setEndpoint(endpoint string) error {
// endpoint := "eu-vision.googleapis.com:443"
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx, option.WithEndpoint(endpoint))
if err != nil {
return fmt.Errorf("NewImageAnnotatorClient: %w", err)
}
defer client.Close()
return nil
}
Java
Antes de testar este exemplo, siga as instruções de configuração do Java no Guia de início rápido da API Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vision para Java.
ImageAnnotatorSettings settings =
ImageAnnotatorSettings.newBuilder().setEndpoint("eu-vision.googleapis.com:443").build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
ImageAnnotatorClient client = ImageAnnotatorClient.create(settings);
Node.js
Antes de testar este exemplo, siga as instruções de configuração do Node.js no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionNode.js.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');
async function setEndpoint() {
// Specifies the location of the api endpoint
const clientOptions = {apiEndpoint: 'eu-vision.googleapis.com'};
// Creates a client
const client = new vision.ImageAnnotatorClient(clientOptions);
// Performs text detection on the image file
const [result] = await client.textDetection('./resources/wakeupcat.jpg');
const labels = result.textAnnotations;
console.log('Text:');
labels.forEach(label => console.log(label.description));
}
setEndpoint();
Python
Antes de testar este exemplo, siga as instruções de configuração do Python no Guia de início rápido do Vision: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API VisionPython.
Para autenticar no Vision, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
from google.cloud import vision
client_options = {"api_endpoint": "eu-vision.googleapis.com"}
client = vision.ImageAnnotatorClient(client_options=client_options)
Testar
Teste as opções de detecção de texto e de texto em documentos abaixo. É possível usar a
imagem já especificada (gs://cloud-samples-data/vision/ocr/sign.jpg
) clicando em
Executar ou especificar sua própria imagem no lugar.
Para testar a detecção de texto em documentos, atualize o valor de type
para
DOCUMENT_TEXT_DETECTION
.
Corpo da solicitação:
{ "requests": [ { "features": [ { "type": "TEXT_DETECTION" } ], "image": { "source": { "imageUri": "gs://cloud-samples-data/vision/ocr/sign.jpg" } } } ] }