Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Model Pendeteksi orang/kendaraan memungkinkan Anda mendeteksi dan menghitung orang atau
kendaraan* dalam frame video. Model menerima streaming video sebagai input
dan menghasilkan buffer protokol dengan jumlah orang dan kendaraan yang terdeteksi
di setiap frame. Model berjalan pada enam FPS.
* Mobil, bus, truk, sepeda, sepeda motor, dan ambulans.
Output model
Model Pendeteksi orang/kendaraan menunjukkan jumlah orang dan kendaraan
yang terdeteksi dalam frame yang sedang diproses. Berikut adalah
definisi buffer protokol dari output model.
Frekuensi aliran output bersifat konstan: satu frame per detik.
// The prediction result proto for Person/Vehicle Detection.
message OccupancyCountingPredictionResult {
// Current timestamp.
google.protobuf.Timestamp current_time = 1;
// The entity info for annotations from the model.
message Entity {
// Label id.
int64 label_id = 1;
// Human readable string of the label.
string label_string = 2;
}
// Identified box contains location and the entity of the object.
message IdentifiedBox {
// An unique id for this box.
int64 box_id = 1;
// Bounding Box in the normalized coordinates.
message NormalizedBoundingBox {
// Min in x coordinate.
float xmin = 1;
// Min in y coordinate.
float ymin = 2;
// Width of the bounding box.
float width = 3;
// Height of the bounding box.
float height = 4;
}
// Bounding Box in the normalized coordinates.
NormalizedBoundingBox normalized_bounding_box = 2;
// Confidence score associated with this box.
float score = 3;
// Entity of this box.
Entity entity = 4;
}
// A list of identified boxes.
repeated IdentifiedBox identified_boxes = 2;
// The statistics info for annotations from the model.
message Stats {
// The object info and count for annotations from the model.
message ObjectCount {
// Entity of this object.
Entity entity = 1;
// Count of the object.
int32 count = 2;
}
// Counts of the full frame.
repeated ObjectCount full_frame_count = 1;
}
// Detection statistics.
Stats stats = 3;
}
Praktik terbaik dan batasan
Hindari sudut pandang kamera yang tidak biasa (misalnya, tampilan dari atas ke bawah) yang menampilkan orang dan kendaraan
secara berbeda dari tampilan standar atau umum.
Kualitas deteksi dapat sangat terpengaruh oleh tampilan yang tidak biasa.
Pastikan orang dan kendaraan terlihat sepenuhnya atau sebagian besar. Kualitas
deteksi dapat dipengaruhi oleh oklusi parsial oleh objek lain.
Pendeteksi Orang/kendaraan memiliki ukuran objek minimum yang dapat dideteksi. Ukuran ini
adalah sekitar 2% sehubungan dengan ukuran tampilan kamera. Pastikan
orang dan kendaraan target tidak terlalu jauh dari kamera. Ukuran objek
utama yang dapat dilihat harus cukup besar.
Area minat harus memiliki pencahayaan yang tepat.
Pastikan lensa kamera sumber video bersih.
Pastikan entitas (selain orang atau mobil) tidak menghalangi bagian apa pun dari
ruang pandang kamera.
Faktor berikut dapat menurunkan performa model. Pertimbangkan faktor-faktor
berikut saat Anda mendapatkan data:
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-04 UTC."],[],[],null,["# Person/vehicle detector guide\n\nThe **Person/vehicle detector** model lets you detect and count people or\nvehicles^\\*^ in video frames. The model accepts a video stream as input\nand outputs a [protocol buffer](https://developers.google.com/protocol-buffers/docs/overview) with the count of detected\npeople and vehicles detected in each frame. The model runs at six FPS.\n\n^\\* Cars, buses, trucks, bicycles, motorcycles and ambulances.^\n\nModel output\n------------\n\nThe Person/vehicle detector model shows the number of people and vehicles\ndetected in the current processed frame. Below is the\n[protocol buffer](https://developers.google.com/protocol-buffers/docs/overview) definition of the model output.\nThe frequency of the output stream is constant: one frame per second. \n\n```\n// The prediction result proto for Person/Vehicle Detection.\nmessage OccupancyCountingPredictionResult {\n\n // Current timestamp.\n google.protobuf.Timestamp current_time = 1;\n\n // The entity info for annotations from the model.\n message Entity {\n // Label id.\n int64 label_id = 1;\n // Human readable string of the label.\n string label_string = 2;\n }\n\n // Identified box contains location and the entity of the object.\n message IdentifiedBox {\n // An unique id for this box.\n int64 box_id = 1;\n // Bounding Box in the normalized coordinates.\n message NormalizedBoundingBox {\n // Min in x coordinate.\n float xmin = 1;\n // Min in y coordinate.\n float ymin = 2;\n // Width of the bounding box.\n float width = 3;\n // Height of the bounding box.\n float height = 4;\n }\n // Bounding Box in the normalized coordinates.\n NormalizedBoundingBox normalized_bounding_box = 2;\n // Confidence score associated with this box.\n float score = 3;\n // Entity of this box.\n Entity entity = 4;\n }\n\n // A list of identified boxes.\n repeated IdentifiedBox identified_boxes = 2;\n\n // The statistics info for annotations from the model.\n message Stats {\n // The object info and count for annotations from the model.\n message ObjectCount {\n // Entity of this object.\n Entity entity = 1;\n // Count of the object.\n int32 count = 2;\n }\n // Counts of the full frame.\n repeated ObjectCount full_frame_count = 1;\n }\n\n // Detection statistics.\n Stats stats = 3;\n}\n```\n\nBest practices and limitations\n------------------------------\n\n- Avoid unusual camera viewpoints (for example, a top-down view) where people and vehicles appear differently from a standard or common view of them. The detection quality can be largely impacted by unusual views.\n- Ensure that people and vehicles are fully or mostly visible. The detection quality can be affected by partial occlusion by other objects.\n- The Person/vehicle detector has a minimal detectable object size. This size is approximately 2% with respect to the size of the camera view. Ensure that the target people and vehicles are not too far away from the camera. These key objects' viewable sizes must be sufficiently large.\n- Areas of interest must have proper lighting.\n- Ensure the video source camera lens is clean.\n- Ensure entities (other than people or cars) don't obstruct any part of the camera's field of view.\n- The following factors might degrade the model's performance. Consider these factors when you source data:\n - Poor lighting conditions.\n - Crowdedness and object occlusions.\n - Uncommon viewpoints.\n - Small object sizes."]]