Mendeteksi orang

Contoh kode berikut menunjukkan cara mendeteksi orang dalam file video menggunakan Video Intelligence API.

Video Intelligence dapat mendeteksi kehadiran manusia dalam file video dan melacak individu di seluruh segmen video atau video.

Deteksi orang dari file di Cloud Storage

Berikut ini cara mengirimkan permintaan anotasi ke Video Intelligence dengan fitur deteksi orang.

REST

Kirim permintaan anotasi video

Berikut ini cara mengirim permintaan POST ke metode videos:annotate. Contoh tersebut menggunakan Google Cloud CLI untuk membuat token akses. Untuk mengetahui petunjuk cara menginstal gcloud CLI, baca Panduan Memulai Video Intelligence API. Lihat juga PersonDetectionConfig.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • INPUT_URI: bucket Cloud Storage yang berisi file yang ingin Anda beri anotasi, termasuk nama file-nya. Harus diawali dengan gs://.
    Contoh:
    "inputUri": "gs://cloud-samples-data/video/googlework_short.mp4"
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Meminta isi JSON:

{
  "inputUri": "INPUT_URI",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

Jika respons berhasil, Video Intelligence API akan menampilkan name untuk operasi Anda. Di atas menunjukkan contoh respons tersebut, dengan:

  • PROJECT_NUMBER: jumlah project Anda
  • LOCATION_ID: region Cloud tempat anotasi seharusnya dilakukan. Region cloud yang didukung adalah: us-east1, us-west1, europe-west1, asia-east1. Jika tidak ada wilayah yang ditentukan, wilayah akan ditentukan berdasarkan lokasi file video.
  • OPERATION_ID: ID operasi yang berjalan lama yang dibuat untuk permintaan dan diberikan dalam respons saat Anda memulai operasi, misalnya 12345...

Mendapatkan hasil anotasi

Untuk mengambil hasil operasi, buat permintaan GET menggunakan nama operasi yang ditampilkan dari panggilan ke videos:annotate, seperti ditunjukkan dalam contoh berikut.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • OPERATION_NAME: nama operasi seperti yang ditampilkan oleh Video Intelligence API. Nama operasi memiliki format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Untuk mengirim permintaan, perluas salah satu opsi berikut:

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

Anotasi deteksi bidikan ditampilkan sebagai daftar shotAnnotations. Catatan: Kolom done hanya ditampilkan jika nilainya True. Ini tidak termasuk dalam respons dengan operasi yang belum selesai.

Download hasil anotasi

Salin anotasi dari sumber ke bucket tujuan: (lihat Menyalin file dan objek)

gsutil cp gcs_uri gs://my-bucket

Catatan: Jika output gcs uri disediakan oleh pengguna, anotasi akan disimpan dalam uri gcs tersebut.

Java

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;

public class DetectPersonGcs {

  public static void detectPersonGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
    detectPersonGcs(gcsUri);
  }

  // Detects people in a video stored in Google Cloud Storage using
  // the Cloud Video Intelligence API.
  public static void detectPersonGcs(String gcsUri) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();
      // Get the first response, since we sent only one video.
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

async function detectPersonGCS() {
  const request = {
    inputUri: gcsUri,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPersonGCS();

Python

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import videointelligence_v1 as videointelligence

def detect_person(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
    """Detects people in a video."""

    client = videointelligence.VideoIntelligenceServiceClient()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_uri": gcs_uri,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristics - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien lalu buka Dokumentasi referensi Video Intelligence untuk .NET.

PHP: Ikuti petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Video Intelligence untuk PHP.

Ruby: Ikuti petunjuk penyiapan Ruby di halaman library klien, lalu buka Dokumentasi referensi Video Intelligence untuk Ruby.

Deteksi orang dari file lokal

Contoh berikut menggunakan deteksi orang untuk menemukan entity dalam video dari file video yang diupload dari komputer lokal Anda.

REST

Mengirim permintaan proses

Untuk melakukan deteksi orang pada file video lokal, lakukan enkode base64 atas isi file video tersebut. Untuk mengetahui informasi tentang cara mengenkode konten dengan base64 pada konten file video, lihat Encoding Base64. Kemudian, buat permintaan POST ke metode videos:annotate. Sertakan konten yang dienkode base64 di kolom inputContent pada permintaan dan tentukan fitur PERSON_DETECTION.

Berikut ini contoh permintaan POST menggunakan curl. Contoh tersebut menggunakan Google Cloud CLI untuk membuat token akses. Untuk mengetahui petunjuk cara menginstal gcloud CLI, baca Panduan Memulai Video Intelligence API

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • inputContent: File video lokal dalam format biner
    Misalnya: 'AAAAGGZ0eXBtcDQyAAAAAGlzb21tcDQyAAGVYW1vb3YAAABsbXZoZAAAAADWvhlR1r4ZUQABX5ABCOxo AAEAAAEAAAAAAA4...'
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Meminta isi JSON:

{
  "inputUri": "Local video file in binary format",
  "features": ["PERSON_DETECTION"],
  "videoContext": {
    "personDetectionConfig": {
      "includeBoundingBoxes": true,
      "includePoseLandmarks": true,
      "includeAttributes": true
     }
  }
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

Jika permintaan berhasil, Video Intelligence name untuk operasi Anda. Di atas menunjukkan contoh respons tersebut, dengan project-number adalah nomor project Anda dan operation-id adalah ID operasi jangka panjang yang dibuat untuk permintaan tersebut.

{ "name": "us-west1.17122464255125931980" }

Mendapatkan hasil

Untuk mengambil hasil operasi, buat permintaan GET ke endpoint operations dan tentukan nama operasi Anda.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • OPERATION_NAME: nama operasi seperti yang ditampilkan oleh Video Intelligence API. Nama operasi memiliki format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Untuk mengirim permintaan, perluas salah satu opsi berikut:

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

Java

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.DetectedLandmark;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.PersonDetectionAnnotation;
import com.google.cloud.videointelligence.v1.PersonDetectionConfig;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectPerson {

  public static void detectPerson() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";
    detectPerson(localFilePath);
  }

  // Detects people in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectPerson(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      PersonDetectionConfig personDetectionConfig =
          PersonDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get poses and attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludePoseLandmarks(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setPersonDetectionConfig(personDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(inputContent)
              .addFeatures(Feature.PERSON_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects people in a video
      // We get the first result because only one video is processed.
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (PersonDetectionAnnotation personDetectionAnnotation :
          annotationResult.getPersonDetectionAnnotationsList()) {
        System.out.print("Person detected:\n");
        for (Track track : personDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that include characteristic--e.g. clothes,
          // posture of the person detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          // Attributes include unique pieces of clothing, poses (i.e., body landmarks)
          // of the person detected.
          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            System.out.printf(
                "\tAttribute: %s; Value: %s\n", attribute.getName(), attribute.getValue());
          }

          // Landmarks in person detection include body parts.
          for (DetectedLandmark attribute : firstTimestampedObject.getLandmarksList()) {
            System.out.printf(
                "\tLandmark: %s; Vertex: %f, %f\n",
                attribute.getName(), attribute.getPoint().getX(), attribute.getPoint().getY());
          }
        }
      }
    }
  }
}

Node.js

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectPerson() {
  const request = {
    inputContent: inputContent,
    features: ['PERSON_DETECTION'],
    videoContext: {
      personDetectionConfig: {
        // Must set includeBoundingBoxes to true to get poses and attributes.
        includeBoundingBoxes: true,
        includePoseLandmarks: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const personAnnotations =
    results[0].annotationResults[0].personDetectionAnnotations;

  for (const {tracks} of personAnnotations) {
    console.log('Person detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristic--e.g. clothes, posture
      // of the person detected.
      const [firstTimestampedObject] = timestampedObjects;

      // Attributes include unique pieces of clothing, poses (i.e., body
      // landmarks) of the person detected.
      for (const {name, value} of firstTimestampedObject.attributes) {
        console.log(`\tAttribute: ${name}; Value: ${value}`);
      }

      // Landmarks in person detection include body parts.
      for (const {name, point} of firstTimestampedObject.landmarks) {
        console.log(`\tLandmark: ${name}; Vertex: ${point.x}, ${point.y}`);
      }
    }
  }
}

detectPerson();

Python

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import io

from google.cloud import videointelligence_v1 as videointelligence

def detect_person(local_file_path="path/to/your/video-file.mp4"):
    """Detects people in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.types.PersonDetectionConfig(
        include_bounding_boxes=True,
        include_attributes=True,
        include_pose_landmarks=True,
    )
    context = videointelligence.types.VideoContext(person_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.PERSON_DETECTION],
            "input_content": input_content,
            "video_context": context,
        }
    )

    print("\nProcessing video for person detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.person_detection_annotations:
        print("Person detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped objects that include
            # characteristic - -e.g.clothes, posture of the person detected.
            # Grab the first timestamped object
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include unique pieces of clothing,
            # poses, or hair color.
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

            # Landmarks in person detection include body parts such as
            # left_shoulder, right_ear, and right_ankle
            print("Landmarks:")
            for landmark in timestamped_object.landmarks:
                print(
                    "\t{}: {} (x={}, y={})".format(
                        landmark.name,
                        landmark.confidence,
                        landmark.point.x,  # Normalized vertex
                        landmark.point.y,  # Normalized vertex
                    )
                )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien lalu buka Dokumentasi referensi Video Intelligence untuk .NET.

PHP: Ikuti petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Video Intelligence untuk PHP.

Ruby: Ikuti petunjuk penyiapan Ruby di halaman library klien, lalu buka Dokumentasi referensi Video Intelligence untuk Ruby.