Generate streaming text content with Generative Model

This sample demonstrates how to use Generative Models to generate text in a streaming format.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithTextStream shows how to generate text stream using a text prompt.
func generateWithTextStream(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.0-flash-001"
	contents := genai.Text("Why is the sky blue?")

	for resp, err := range client.Models.GenerateContentStream(ctx, modelName, contents, nil) {
		if err != nil {
			return fmt.Errorf("failed to generate content: %w", err)
		}

		chunk, err := resp.Text()
		if err != nil {
			return fmt.Errorf("failed to convert model response to text: %w", err)
		}
		fmt.Fprintln(w, chunk)
	}

	// Example response:
	// The
	//  sky is blue
	//  because of a phenomenon called **Rayleigh scattering**. Here's the breakdown:
	// ...

	return nil
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.generateContentStream({
    model: 'gemini-2.0-flash',
    contents: 'Why is the sky blue?',
  });

  let response_text = '';
  for await (const chunk of response) {
    response_text += chunk.text;
    console.log(chunk.text);
  }
  return response_text;
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))

for chunk in client.models.generate_content_stream(
    model="gemini-2.5-flash-preview-05-20",
    contents="Why is the sky blue?",
):
    print(chunk.text, end="")
# Example response:
# The
#  sky appears blue due to a phenomenon called **Rayleigh scattering**. Here's
#  a breakdown of why:
# ...

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.