Process a PDF file with Gemini 1.5 Pro

This sample shows you how to process a PDF document using Gemini 1.5 Pro.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

C#

Before trying this sample, follow the C# setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI C# API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class PdfInput
{
    public async Task<string> SummarizePdf(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"You are a very professional document summarization specialist.
Please summarize the given document.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "application/pdf", FileUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf" }}
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

Go

Before trying this sample, follow the Go setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Go API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// pdfPrompt is a sample prompt type consisting of one PDF asset, and a text question.
type pdfPrompt struct {
	// pdfPath is a Google Cloud Storage path starting with "gs://"
	pdfPath string
	// question asked to the model
	question string
}

// generateContentFromPDF generates a response into the provided io.Writer, based upon the PDF
// asset and the question provided in the multimodal prompt.
func generateContentFromPDF(w io.Writer, prompt pdfPrompt, projectID, location, modelName string) error {
	// prompt := pdfPrompt{
	// 	pdfPath: "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf",
	// 	question: `
	// 		You are a very professional document summarization specialist.
	// 		Please summarize the given document.
	// 	`,
	// }
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	part := genai.FileData{
		MIMEType: "application/pdf",
		FileURI:  prompt.pdfPath,
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(prompt.question))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class PdfInput {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    pdfInput(projectId, location, modelName);
  }

  // Analyzes the given video input.
  public static String pdfInput(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String pdfUri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "You are a very professional document summarization specialist.\n"
                  + "Please summarize the given document.",
              PartMaker.fromMimeTypeAndData("application/pdf", pdfUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);
      return output;
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function analyze_pdf(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-pro-preview-0409',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf',
      mime_type: 'application/pdf',
    },
  };
  const textPart = {
    text: `
    You are a very professional document summarization specialist.
    Please summarize the given document.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Python

Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import vertexai

from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below lines
# project_id = "PROJECT_ID"

vertexai.init(project=project_id, location="us-central1")

model = GenerativeModel(model_name="gemini-1.5-flash-001")

prompt = """
You are a very professional document summarization specialist.
Please summarize the given document.
"""

pdf_file_uri = "gs://cloud-samples-data/generative-ai/pdf/2403.05530.pdf"
pdf_file = Part.from_uri(pdf_file_uri, mime_type="application/pdf")
contents = [pdf_file, prompt]

response = model.generate_content(contents)
print(response.text)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.