Optimizar modelos de IA generativa con la optimización supervisada de Vertex AI

Ajusta automáticamente un modelo de Gemini con la función de ajuste fino supervisado (SFT) de Vertex AI de Google Cloud.

Investigar más

Para obtener documentación detallada que incluya este código de muestra, consulta lo siguiente:

Código de ejemplo

Python

Antes de probar este ejemplo, sigue las Python instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Python de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import time

import vertexai
from vertexai.tuning import sft

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")

sft_tuning_job = sft.train(
    source_model="gemini-2.0-flash-001",
    # 1.5 and 2.0 models use the same JSONL format
    train_dataset="gs://cloud-samples-data/ai-platform/generative_ai/gemini-1_5/text/sft_train_data.jsonl",
)

# Polling for job completion
while not sft_tuning_job.has_ended:
    time.sleep(60)
    sft_tuning_job.refresh()

print(sft_tuning_job.tuned_model_name)
print(sft_tuning_job.tuned_model_endpoint_name)
print(sft_tuning_job.experiment)
# Example response:
# projects/123456789012/locations/us-central1/models/1234567890@1
# projects/123456789012/locations/us-central1/endpoints/123456789012345
# <google.cloud.aiplatform.metadata.experiment_resources.Experiment object at 0x7b5b4ae07af0>

Siguientes pasos

Para buscar y filtrar ejemplos de código de otros Google Cloud productos, consulta el Google Cloud navegador de ejemplos.