{"instances":[{"image":{// Union field can be only one of the following:"bytesBase64Encoded":string,"gcsUri":string,// End of list of possible types for union field."mimeType":string}}],"parameters":{"sampleCount":integer,"storageUri":string,"language":string,"seed":integer}}
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-08-07。"],[],[],null,["# Image captions\n\n| **Caution:** Starting on June 24, 2025, Imagen versions 1 and 2 are deprecated. Imagen models `imagegeneration@002`, `imagegeneration@005`, and `imagegeneration@006` will be removed on September 24, 2025 . For more information about migrating to Imagen 3, see [Migrate to\n| Imagen 3](/vertex-ai/generative-ai/docs/image/migrate-to-imagen-3).\n\n\u003cbr /\u003e\n\n`imagetext` is the name of the model that supports image captioning. `imagetext`\ngenerates a caption from an image you provide based on the language that you\nspecify. The model supports the following languages: English (`en`), German\n(`de`), French (`fr`), Spanish (`es`) and Italian (`it`).\n\nTo explore this model in the console, see the `Image Captioning` model card in\nthe Model Garden.\n\n\n[View Imagen for Captioning \\& VQA model card](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/imagetext)\n\nUse cases\n---------\n\nSome common use cases for image captioning include:\n\n- Creators can generate captions for uploaded images and videos (for example, a short description of a video sequence)\n- Generate captions to describe products\n- Integrate captioning with an app using the API to create new experiences\n\nHTTP request\n------------\n\n POST https://us-central1-aiplatform.googleapis.com/v1/projects/\u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e/locations/us-central1/publishers/google/models/imagetext:predict\n\nRequest body\n------------\n\n {\n \"instances\": [\n {\n \"image\": {\n // Union field can be only one of the following:\n \"bytesBase64Encoded\": string,\n \"gcsUri\": string,\n // End of list of possible types for union field.\n \"mimeType\": string\n }\n }\n ],\n \"parameters\": {\n \"sampleCount\": integer,\n \"storageUri\": string,\n \"language\": string,\n \"seed\": integer\n }\n }\n\nUse the following parameters for the Imagen model `imagetext`.\nFor more information, see\n[Get image descriptions using visual captioning](/vertex-ai/generative-ai/docs/image/image-captioning).\n\nSample request\n--------------\n\n### REST\n\nTo test a text prompt by using the Vertex AI API, send a POST request to the\npublisher model endpoint.\n\n\nBefore using any of the request data,\nmake the following replacements:\n\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your Google Cloud [project ID](/resource-manager/docs/creating-managing-projects#identifiers).\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: Your project's region. For example, `us-central1`, `europe-west2`, or `asia-northeast3`. For a list of available regions, see [Generative AI on Vertex AI locations](/vertex-ai/generative-ai/docs/learn/locations-genai).\n- \u003cvar translate=\"no\"\u003eB64_IMAGE\u003c/var\u003e: The image to get captions for. The image must be specified as a [base64-encoded](/vertex-ai/generative-ai/docs/image/base64-encode) byte string. Size limit: 10 MB.\n- \u003cvar translate=\"no\"\u003eRESPONSE_COUNT\u003c/var\u003e: The number of image captions you want to generate. Accepted integer values: 1-3.\n- \u003cvar translate=\"no\"\u003eLANGUAGE_CODE\u003c/var\u003e: One of the supported language codes. Languages supported:\n - English (`en`)\n - French (`fr`)\n - German (`de`)\n - Italian (`it`)\n - Spanish (`es`)\n\n\nHTTP method and URL:\n\n```\nPOST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/imagetext:predict\n```\n\n\nRequest JSON body:\n\n```\n{\n \"instances\": [\n {\n \"image\": {\n \"bytesBase64Encoded\": \"B64_IMAGE\"\n }\n }\n ],\n \"parameters\": {\n \"sampleCount\": RESPONSE_COUNT,\n \"language\": \"LANGUAGE_CODE\"\n }\n}\n```\n\nTo send your request, choose one of these options: \n\n#### curl\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) , or by using [Cloud Shell](/shell/docs), which automatically logs you into the `gcloud` CLI . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nSave the request body in a file named `request.json`,\nand execute the following command:\n\n```\ncurl -X POST \\\n -H \"Authorization: Bearer $(gcloud auth print-access-token)\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d @request.json \\\n \"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/imagetext:predict\"\n```\n\n#### PowerShell\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nSave the request body in a file named `request.json`,\nand execute the following command:\n\n```\n$cred = gcloud auth print-access-token\n$headers = @{ \"Authorization\" = \"Bearer $cred\" }\n\nInvoke-WebRequest `\n -Method POST `\n -Headers $headers `\n -ContentType: \"application/json; charset=utf-8\" `\n -InFile request.json `\n -Uri \"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/imagetext:predict\" | Select-Object -Expand Content\n```\nThe following sample responses are for a request with `\"sampleCount\": 2`. The response returns two prediction strings.\n\n**English (`en`):** \n\n```\n{\n \"predictions\": [\n \"a yellow mug with a sheep on it sits next to a slice of cake\",\n \"a cup of coffee with a heart shaped latte art next to a slice of cake\"\n ],\n \"deployedModelId\": \"DEPLOYED_MODEL_ID\",\n \"model\": \"projects/PROJECT_ID/locations/LOCATION/models/MODEL_ID\",\n \"modelDisplayName\": \"MODEL_DISPLAYNAME\",\n \"modelVersionId\": \"1\"\n}\n```\n\n**Spanish (`es`):**\n\n```\n{\n \"predictions\": [\n \"una taza de café junto a un plato de pastel de chocolate\",\n \"una taza de café con una forma de corazón en la espuma\"\n ]\n}\n```\n\n\u003cbr /\u003e\n\nResponse body\n-------------\n\n {\n \"predictions\": [ string ]\n }\n\nSample response\n---------------\n\n {\n \"predictions\": [\n \"text1\",\n \"text2\"\n ]\n }"]]