Eliminazione di un endpoint

Elimina un endpoint utilizzando il metodo delete_endpoint.

Esempio di codice

Java

Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Java.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.EndpointServiceClient;
import com.google.cloud.aiplatform.v1.EndpointServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteEndpointSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String endpointId = "YOUR_ENDPOINT_ID";
    deleteEndpointSample(project, endpointId);
  }

  static void deleteEndpointSample(String project, String endpointId)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    EndpointServiceSettings endpointServiceSettings =
        EndpointServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (EndpointServiceClient endpointServiceClient =
        EndpointServiceClient.create(endpointServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      // NOTE: Be sure to undeploy any models deployed to the endpoint
      // before attempting to delete the endpoint.
      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          endpointServiceClient.deleteEndpointAsync(endpointName);
      System.out.format("Operation name: %s\n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Empty deleteResponse = operationFuture.get(300, TimeUnit.SECONDS);

      System.out.format("Delete Endpoint Response: %s\n", deleteResponse);
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Node.js.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const endpointId = 'YOUR_ENDPOINT_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);

async function deleteEndpoint() {
  // Configure the parent resource
  const endpoint = {
    name: `projects/${project}/locations/${location}/endpoints/${endpointId}`,
  };

  // NOTE: Be sure to undeploy any models deployed to the endpoint before
  // attempting to delete the endpoint.

  // Delete endpoint request
  const [response] = await endpointServiceClient.deleteEndpoint(endpoint);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Delete endpoint response:\n', result);
}
deleteEndpoint();

Python

Prima di provare questo esempio, segui le istruzioni di configurazione di Python nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Python.

Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.

from google.cloud import aiplatform


def delete_endpoint_sample(
    project: str,
    endpoint_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.EndpointServiceClient(client_options=client_options)
    name = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.delete_endpoint(name=name)
    print("Long running operation:", response.operation.name)
    delete_endpoint_response = response.result(timeout=timeout)
    print("delete_endpoint_response:", delete_endpoint_response)

Passaggi successivi

Per cercare e filtrare gli esempi di codice per altri prodotti Google Cloud , consulta il browser degli esempi diGoogle Cloud .