Menghitung l-diversity untuk set data

L-diversity adalah properti set data dan ekstensi k-anonymity yang mengukur keragaman nilai sensitif untuk setiap kolom tempat nilai tersebut muncul. Set data memiliki l-diversity jika, untuk setiap kumpulan baris dengan quasi-ID yang identik, setidaknya ada l nilai berbeda untuk setiap atribut sensitif.

Anda dapat menghitung nilai l-diversity berdasarkan satu atau beberapa kolom, atau kolom, set data. Topik ini menunjukkan cara menghitung nilai l-diversity untuk set data menggunakan Perlindungan Data Sensitif. Untuk mengetahui informasi selengkapnya tentang l-diversity atau analisis risiko secara umum, lihat topik konsep analisis risiko sebelum melanjutkan.

Sebelum memulai

Sebelum melanjutkan, pastikan Anda telah melakukan hal berikut:

  1. Login ke Akun Google Anda.
  2. Di konsol Google Cloud, pada halaman pemilih project, pilih atau buat project Google Cloud.
  3. Buka pemilih project
  4. Pastikan penagihan diaktifkan untuk project Google Cloud Anda. Pelajari cara mengonfirmasi bahwa penagihan diaktifkan untuk project Anda.
  5. Aktifkan Perlindungan Data Sensitif.
  6. Mengaktifkan Perlindungan Data Sensitif

  7. Pilih set data BigQuery yang akan dianalisis. Sensitive Data Protection menghitung metrik l-diversity dengan memindai tabel BigQuery.
  8. Tentukan ID kolom sensitif (jika ada) dan setidaknya satu quasi-ID dalam set data. Untuk mengetahui informasi selengkapnya, lihat Istilah dan teknik analisis risiko.

Menghitung l-diversity

Perlindungan Data Sensitif melakukan analisis risiko setiap kali tugas analisis risiko dijalankan. Anda harus membuat tugas terlebih dahulu, baik dengan menggunakan konsol Google Cloud, mengirim permintaan DLP API, atau menggunakan library klien Perlindungan Data Sensitif.

Konsol

  1. Di konsol Google Cloud, buka halaman Create risk analysis.

    Buka Buat analisis risiko

  2. Di bagian Pilih data input, tentukan tabel BigQuery yang akan dipindai dengan memasukkan project ID project yang berisi tabel, ID set data tabel, dan nama tabel.

  3. Di bagian Metrik privasi untuk dihitung, pilih l-diversity.

  4. Di bagian ID Tugas, Anda dapat memberikan ID kustom ke tugas secara opsional dan memilih lokasi resource tempat Perlindungan Data Sensitif akan memproses data Anda. Setelah selesai, klik Lanjutkan.

  5. Di bagian Define fields, Anda menentukan kolom sensitif dan quasi-ID untuk tugas risiko keberagaman l. Perlindungan Data Sensitif mengakses metadata tabel BigQuery yang Anda tentukan di langkah sebelumnya dan mencoba mengisi daftar kolom.

    1. Centang kotak yang sesuai untuk menentukan kolom sebagai kolom sensitif (S) atau quasi-ID (QI). Anda harus memilih 1 kolom sensitif dan minimal 1 quasi-ID.
    2. Jika Perlindungan Data Sensitif tidak dapat mengisi kolom, klik Masukkan nama kolom untuk memasukkan satu atau beberapa kolom secara manual dan menetapkan setiap kolom sebagai kolom sensitif atau quasi-ID. Setelah selesai, klik Lanjutkan.
  6. Di bagian Tambahkan tindakan, Anda dapat menambahkan tindakan opsional untuk dilakukan saat tugas risiko selesai. Opsi yang tersedia adalah:

    • Simpan ke BigQuery: Menyimpan hasil pemindaian analisis risiko ke tabel BigQuery.
    • Publikasikan ke Pub/Sub: Memublikasikan notifikasi ke topik Pub/Sub.

    • Beri tahu melalui email: Mengirim email kepada Anda yang berisi hasil. Setelah selesai, klik Buat.

Tugas analisis risiko l-diversity akan segera dimulai.

C#

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.Action.Types;
using static Google.Cloud.Dlp.V2.PrivacyMetric.Types;

public class RiskAnalysisCreateLDiversity
{
    public static object LDiversity(
        string callingProjectId,
        string tableProjectId,
        string datasetId,
        string tableId,
        string topicId,
        string subscriptionId,
        IEnumerable<FieldId> quasiIds,
        string sensitiveAttribute)
    {
        var dlp = DlpServiceClient.Create();

        // Construct + submit the job
        var ldiversityConfig = new LDiversityConfig
        {
            SensitiveAttribute = new FieldId { Name = sensitiveAttribute },
            QuasiIds = { quasiIds }
        };

        var config = new RiskAnalysisJobConfig
        {
            PrivacyMetric = new PrivacyMetric
            {
                LDiversityConfig = ldiversityConfig
            },
            SourceTable = new BigQueryTable
            {
                ProjectId = tableProjectId,
                DatasetId = datasetId,
                TableId = tableId
            },
            Actions =
            {
                new Google.Cloud.Dlp.V2.Action
                {
                    PubSub = new PublishToPubSub
                    {
                        Topic = $"projects/{callingProjectId}/topics/{topicId}"
                    }
                }
            }
        };

        var submittedJob = dlp.CreateDlpJob(
            new CreateDlpJobRequest
            {
                ParentAsProjectName = new ProjectName(callingProjectId),
                RiskJob = config
            });

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;

        // SimpleSubscriber runs your message handle function on multiple
        // threads to maximize throughput.
        var done = new ManualResetEventSlim(false);
        subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == submittedJob.Name)
            {
                Thread.Sleep(500); // Wait for DLP API results to become consistent
                done.Set();
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
        subscriber.StopAsync(CancellationToken.None).Wait();

        // Process results
        var resultJob = dlp.GetDlpJob(
            new GetDlpJobRequest
            {
                DlpJobName = DlpJobName.Parse(submittedJob.Name)
            });

        var result = resultJob.RiskDetails.LDiversityResult;

        for (var bucketIdx = 0; bucketIdx < result.SensitiveValueFrequencyHistogramBuckets.Count; bucketIdx++)
        {
            var bucket = result.SensitiveValueFrequencyHistogramBuckets[bucketIdx];
            Console.WriteLine($"Bucket {bucketIdx}");
            Console.WriteLine($"  Bucket size range: [{bucket.SensitiveValueFrequencyLowerBound}, {bucket.SensitiveValueFrequencyUpperBound}].");
            Console.WriteLine($"  {bucket.BucketSize} unique value(s) total.");

            foreach (var bucketValue in bucket.BucketValues)
            {
                // 'UnpackValue(x)' is a prettier version of 'x.toString()'
                Console.WriteLine($"    Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]");
                Console.WriteLine($"    Class size: {bucketValue.EquivalenceClassSize}");

                foreach (var topValue in bucketValue.TopSensitiveValues)
                {
                    Console.WriteLine($"    Sensitive value {UnpackValue(topValue.Value)} occurs {topValue.Count} time(s).");
                }
            }
        }

        return result;
    }

    public static string UnpackValue(Value protoValue)
    {
        var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString());
        return jsonValue.Values.ElementAt(0).ToString();
    }
}

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// riskLDiversity computes the L Diversity of the given columns.
func riskLDiversity(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, sensitiveAttribute string, columnNames ...string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// sensitiveAttribute := "city"
	// columnNames := "state_number", "county"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	topicExists, err := t.Exists(ctx)
	if err != nil {
		return err
	}
	if !topicExists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	subExists, err := s.Exists(ctx)
	if err != nil {
		return err
	}
	if !subExists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Build the QuasiID slice.
	var q []*dlppb.FieldId
	for _, c := range columnNames {
		q = append(q, &dlppb.FieldId{Name: c})
	}

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_LDiversityConfig_{
						LDiversityConfig: &dlppb.PrivacyMetric_LDiversityConfig{
							QuasiIds: q,
							SensitiveAttribute: &dlppb.FieldId{
								Name: sensitiveAttribute,
							},
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())
	// Wait for the risk job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		j, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		h := j.GetRiskDetails().GetLDiversityResult().GetSensitiveValueFrequencyHistogramBuckets()
		for i, b := range h {
			fmt.Fprintf(w, "Histogram bucket %v\n", i)
			fmt.Fprintf(w, "  Size range: [%v,%v]\n", b.GetSensitiveValueFrequencyLowerBound(), b.GetSensitiveValueFrequencyUpperBound())
			fmt.Fprintf(w, "  %v unique values total\n", b.GetBucketSize())
			for _, v := range b.GetBucketValues() {
				var qvs []string
				for _, qv := range v.GetQuasiIdsValues() {
					qvs = append(qvs, qv.String())
				}
				fmt.Fprintf(w, "    QuasiID values: %s\n", strings.Join(qvs, ", "))
				fmt.Fprintf(w, "    Class size: %v\n", v.GetEquivalenceClassSize())
				for _, sv := range v.GetTopSensitiveValues() {
					fmt.Fprintf(w, "    Sensitive value %v occurs %v times\n", sv.GetValue(), sv.GetCount())
				}
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Recieve: %w", err)
	}
	return nil
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.dlp.v2.DlpServiceSettings;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.PublishToPubSub;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.LDiversityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import com.google.privacy.dlp.v2.ValueFrequency;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import org.threeten.bp.Duration;

@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
class RiskAnalysisLDiversity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datasetId = "your-bigquery-dataset-id";
    String tableId = "your-bigquery-table-id";
    String topicId = "pub-sub-topic";
    String subscriptionId = "pub-sub-subscription";
    calculateLDiversity(projectId, datasetId, tableId, topicId, subscriptionId);
  }

  public static void calculateLDiversity(
      String projectId, String datasetId, String tableId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    DlpServiceSettings.Builder dlpServiceSettingsBuilder = DlpServiceSettings.newBuilder();
    dlpServiceSettingsBuilder
        .getDlpJobSettings()
        .setRetrySettings(
            dlpServiceSettingsBuilder
                .getDlpJobSettings()
                .getRetrySettings()
                .toBuilder()
                .setTotalTimeout(Duration.ofSeconds(600))
                .build());
    try (DlpServiceClient dlpServiceClient =
        DlpServiceClient.create(dlpServiceSettingsBuilder.build())) {
      // Specify the BigQuery table to analyze
      BigQueryTable bigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId(tableId)
              .build();

      // These values represent the column names of quasi-identifiers to analyze
      List<String> quasiIds = Arrays.asList("Age", "Mystery");

      // This value represents the column name to compare the quasi-identifiers against
      String sensitiveAttribute = "Name";

      // Configure the privacy metric for the job
      FieldId sensitiveAttributeField = FieldId.newBuilder().setName(sensitiveAttribute).build();
      List<FieldId> quasiIdFields =
          quasiIds.stream()
              .map(columnName -> FieldId.newBuilder().setName(columnName).build())
              .collect(Collectors.toList());
      LDiversityConfig ldiversityConfig =
          LDiversityConfig.newBuilder()
              .addAllQuasiIds(quasiIdFields)
              .setSensitiveAttribute(sensitiveAttributeField)
              .build();
      PrivacyMetric privacyMetric =
          PrivacyMetric.newBuilder().setLDiversityConfig(ldiversityConfig).build();

      // Create action to publish job status notifications over Google Cloud Pub/
      ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);
      PublishToPubSub publishToPubSub =
          PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the risk analysis job to perform
      RiskAnalysisJobConfig riskAnalysisJobConfig =
          RiskAnalysisJobConfig.newBuilder()
              .setSourceTable(bigQueryTable)
              .setPrivacyMetric(privacyMetric)
              .addActions(action)
              .build();

      // Build the request to be sent by the client
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setRiskJob(riskAnalysisJobConfig)
              .build();

      // Send the request to the API using the client
      DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Build a request to get the completed job
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();

      // Retrieve completed job status
      DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());

      // Get the result and parse through and process the information
      LDiversityResult ldiversityResult = completedJob.getRiskDetails().getLDiversityResult();
      List<LDiversityHistogramBucket> histogramBucketList =
          ldiversityResult.getSensitiveValueFrequencyHistogramBucketsList();
      for (LDiversityHistogramBucket result : histogramBucketList) {
        for (LDiversityEquivalenceClass bucket : result.getBucketValuesList()) {
          List<String> quasiIdValues =
              bucket.getQuasiIdsValuesList().stream()
                  .map(Value::toString)
                  .collect(Collectors.toList());

          System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
          System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());

          for (ValueFrequency valueFrequency : bucket.getTopSensitiveValuesList()) {
            System.out.printf(
                "\t\tSensitive value %s occurs %d time(s).\n",
                valueFrequency.getValue().toString(), valueFrequency.getCount());
          }
        }
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// The column to measure l-diversity relative to, e.g. 'firstName'
// const sensitiveAttribute = 'name';

// A set of columns that form a composite key ('quasi-identifiers')
// const quasiIds = [{ name: 'age' }, { name: 'city' }];

async function lDiversityAnalysis() {
  const sourceTable = {
    projectId: tableProjectId,
    datasetId: datasetId,
    tableId: tableId,
  };

  // Construct request for creating a risk analysis job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    riskJob: {
      privacyMetric: {
        lDiversityConfig: {
          quasiIds: quasiIds,
          sensitiveAttribute: {
            name: sensitiveAttribute,
          },
        },
      },
      sourceTable: sourceTable,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create helper function for unpacking values
  const getValue = obj => obj[Object.keys(obj)[0]];

  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  console.log(`Job created. Job name: ${jobName}`);
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(' Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const histogramBuckets =
    job.riskDetails.lDiversityResult.sensitiveValueFrequencyHistogramBuckets;

  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);

    console.log(
      `Bucket size range: [${histogramBucket.sensitiveValueFrequencyLowerBound}, ${histogramBucket.sensitiveValueFrequencyUpperBound}]`
    );
    histogramBucket.bucketValues.forEach(valueBucket => {
      const quasiIdValues = valueBucket.quasiIdsValues
        .map(getValue)
        .join(', ');
      console.log(`  Quasi-ID values: {${quasiIdValues}}`);
      console.log(`  Class size: ${valueBucket.equivalenceClassSize}`);
      valueBucket.topSensitiveValues.forEach(valueObj => {
        console.log(
          `    Sensitive value ${getValue(valueObj.value)} occurs ${
            valueObj.count
          } time(s).`
        );
      });
    });
  });
}

await lDiversityAnalysis();

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\PrivacyMetric\LDiversityConfig;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Computes the l-diversity of a column set in a Google BigQuery table.
 *
 * @param string    $callingProjectId    The project ID to run the API call under
 * @param string    $dataProjectId       The project ID containing the target Datastore
 * @param string    $topicId             The name of the Pub/Sub topic to notify once the job completes
 * @param string    $subscriptionId      The name of the Pub/Sub subscription to use when listening for job
 * @param string    $datasetId           The ID of the dataset to inspect
 * @param string    $tableId             The ID of the table to inspect
 * @param string    $sensitiveAttribute  The column to measure l-diversity relative to, e.g. "firstName"
 * @param string[]  $quasiIdNames        Array columns that form a composite key (quasi-identifiers)
 */
function l_diversity(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    string $sensitiveAttribute,
    array $quasiIdNames
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct risk analysis config
    $quasiIds = array_map(
        function ($id) {
            return (new FieldId())->setName($id);
        },
        $quasiIdNames
    );

    $sensitiveField = (new FieldId())
        ->setName($sensitiveAttribute);

    $statsConfig = (new LDiversityConfig())
        ->setQuasiIds($quasiIds)
        ->setSensitiveAttribute($sensitiveField);

    $privacyMetric = (new PrivacyMetric())
        ->setLDiversityConfig($statsConfig);

    // Construct items to be analyzed
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct risk analysis job config to run
    $riskJob = (new RiskAnalysisJobConfig())
        ->setPrivacyMetric($privacyMetric)
        ->setSourceTable($bigqueryTable)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setRiskJob($riskJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $histBuckets = $job->getRiskDetails()->getLDiversityResult()->getSensitiveValueFrequencyHistogramBuckets();

            foreach ($histBuckets as $bucketIndex => $histBucket) {
                // Print bucket stats
                printf('Bucket %s:' . PHP_EOL, $bucketIndex);
                printf(
                    '  Bucket size range: [%s, %s]' . PHP_EOL,
                    $histBucket->getSensitiveValueFrequencyLowerBound(),
                    $histBucket->getSensitiveValueFrequencyUpperBound()
                );

                // Print bucket values
                foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
                    printf(
                        '  Class size: %s' . PHP_EOL,
                        $valueBucket->getEquivalenceClassSize()
                    );

                    // Pretty-print quasi-ID values
                    print('  Quasi-ID values:' . PHP_EOL);
                    foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
                        print('    ' . $value->serializeToJsonString() . PHP_EOL);
                    }

                    // Pretty-print sensitive values
                    $topValues = $valueBucket->getTopSensitiveValues();
                    foreach ($topValues as $topValue) {
                        printf(
                            '  Sensitive value %s occurs %s time(s).' . PHP_EOL,
                            $topValue->getValue()->serializeToJsonString(),
                            $topValue->getCount()
                        );
                    }
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Perlindungan Data Sensitif, lihat library klien Perlindungan Data Sensitif.

Untuk melakukan autentikasi ke Perlindungan Data Sensitif, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import concurrent.futures
from typing import List

import google.cloud.dlp
from google.cloud.dlp_v2 import types
import google.cloud.pubsub


def l_diversity_analysis(
    project: str,
    table_project_id: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    sensitive_attribute: str,
    quasi_ids: List[str],
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to compute the l-diversity of a
        column set in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        sensitive_attribute: The column to measure l-diversity relative to.
        quasi_ids: A set of columns that form a composite key.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Create helper function for unpacking values
    def get_values(obj: types.Value) -> int:
        return int(obj.integer_value)

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Location info of the BigQuery table.
    source_table = {
        "project_id": table_project_id,
        "dataset_id": dataset_id,
        "table_id": table_id,
    }

    # Convert quasi id list to Protobuf type
    def map_fields(field: str) -> dict:
        return {"name": field}

    quasi_ids = map(map_fields, quasi_ids)

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        "privacy_metric": {
            "l_diversity_config": {
                "quasi_ids": quasi_ids,
                "sensitive_attribute": {"name": sensitive_attribute},
            }
        },
        "source_table": source_table,
        "actions": actions,
    }

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job})

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        if message.attributes["DlpJobName"] == operation.name:
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(request={"name": operation.name})
            print(f"Job name: {job.name}")
            histogram_buckets = (
                job.risk_details.l_diversity_result.sensitive_value_frequency_histogram_buckets  # noqa: E501
            )
            # Print bucket stats
            for i, bucket in enumerate(histogram_buckets):
                print(f"Bucket {i}:")
                print(
                    "   Bucket size range: [{}, {}]".format(
                        bucket.sensitive_value_frequency_lower_bound,
                        bucket.sensitive_value_frequency_upper_bound,
                    )
                )
                for value_bucket in bucket.bucket_values:
                    print(
                        "   Quasi-ID values: {}".format(
                            map(get_values, value_bucket.quasi_ids_values)
                        )
                    )
                    print(f"   Class size: {value_bucket.equivalence_class_size}")
                    for value in value_bucket.top_sensitive_values:
                        print(
                            "   Sensitive value {} occurs {} time(s)".format(
                                value.value, value.count
                            )
                        )
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    try:
        subscription.result(timeout=timeout)
    except concurrent.futures.TimeoutError:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )
        subscription.close()

REST

Untuk menjalankan tugas analisis risiko baru guna menghitung l-diversity, kirim permintaan ke resource projects.dlpJobs, dengan PROJECT_ID menunjukkan ID project Anda:

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs

Permintaan berisi objek RiskAnalysisJobConfig, yang terdiri dari hal berikut:

  • Objek PrivacyMetric. Di sinilah Anda menentukan bahwa Anda menghitung l-diversity dengan menyertakan objek LDiversityConfig.

  • Objek BigQueryTable. Tentukan tabel BigQuery yang akan dipindai dengan menyertakan semua hal berikut:

    • projectId: Project ID project yang berisi tabel.
    • datasetId: ID set data tabel.
    • tableId: Nama tabel.
  • Kumpulan satu atau beberapa objek Action, yang mewakili tindakan yang akan dijalankan, dalam urutan yang diberikan, pada penyelesaian tugas. Setiap objek Action dapat berisi salah satu tindakan berikut:

    Dalam objek LDiversityConfig, Anda menentukan hal berikut:

    • quasiIds[]: Kumpulan quasi-ID (objek FieldId) yang menunjukkan cara class ekuivalensi ditentukan untuk komputasi l-diversity. Seperti KAnonymityConfig, saat Anda menentukan beberapa kolom, kolom tersebut dianggap sebagai satu kunci gabungan.
    • sensitiveAttribute: Kolom sensitif (objek FieldId) untuk menghitung nilai l-diversity.

Segera setelah Anda mengirim permintaan ke DLP API, API tersebut akan memulai tugas analisis risiko.

Mencantumkan tugas analisis risiko yang telah selesai

Anda dapat melihat daftar tugas analisis risiko yang telah dijalankan dalam project saat ini.

Konsol

Untuk mencantumkan tugas analisis risiko yang sedang berjalan dan yang sebelumnya dijalankan di konsol Google Cloud, lakukan hal berikut:

  1. Di konsol Google Cloud, buka Sensitive Data Protection.

    Buka Perlindungan Data Sensitif

  2. Klik tab Tugas & pemicu tugas di bagian atas halaman.

  3. Klik tab Tugas risiko.

Lowongan pekerjaan risiko akan muncul.

Protokol

Untuk membuat daftar tugas analisis risiko yang sedang berjalan dan yang sebelumnya dijalankan, kirim permintaan GET ke resource projects.dlpJobs. Menambahkan filter jenis tugas (?type=RISK_ANALYSIS_JOB) akan mempersempit respons hanya ke tugas analisis risiko.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs?type=RISK_ANALYSIS_JOB

Respons yang Anda terima berisi representasi JSON dari semua tugas analisis risiko saat ini dan sebelumnya.

Melihat hasil tugas l-diversity

Sensitive Data Protection di konsol Google Cloud menampilkan visualisasi bawaan untuk tugas l-diversity yang telah selesai. Setelah mengikuti petunjuk di bagian sebelumnya, dari listingan tugas analisis risiko, pilih tugas yang ingin Anda lihat hasilnya. Dengan asumsi tugas telah berhasil dijalankan, bagian atas halaman Detail analisis risiko akan terlihat seperti ini:

Di bagian atas halaman terdapat informasi tentang tugas risiko keberagaman l, termasuk ID tugasnya dan, di bagian Penampung, lokasi resource-nya.

Untuk melihat hasil penghitungan l-diversity, klik tab L-diversity. Untuk melihat konfigurasi tugas analisis risiko, klik tab Configuration.

Tab L-diversity pertama-tama mencantumkan nilai sensitif dan quasi-ID yang digunakan untuk menghitung l-diversity.

Diagram risiko

Diagram Risiko re-identifikasi memetakan, pada sumbu y, potensi persentase kehilangan data untuk baris unik dan kombinasi quasi-ID unik untuk mencapai, pada sumbu x, nilai l-diversity. Warna diagram juga menunjukkan potensi risiko. Nuansa biru yang lebih gelap menunjukkan risiko yang lebih tinggi, sedangkan nuansa yang lebih terang menunjukkan risiko yang lebih rendah.

Nilai l-diversity yang lebih tinggi menunjukkan lebih sedikit keragaman nilai, yang dapat membuat set data lebih sulit diidentifikasi ulang dan lebih aman. Namun, untuk mencapai nilai l-diversity yang lebih tinggi, Anda harus menghapus persentase total baris dan kombinasi quasi-ID unik yang lebih tinggi, yang dapat mengurangi kegunaan data. Untuk melihat nilai potensi kehilangan persentase tertentu untuk nilai l-diversity tertentu, arahkan kursor ke diagram. Seperti yang ditunjukkan dalam screenshot, tooltip akan muncul di diagram.

Untuk melihat detail selengkapnya tentang nilai l-diversity tertentu, klik titik data yang sesuai. Penjelasan mendetail ditampilkan di bawah diagram dan contoh tabel data muncul di bagian bawah halaman.

Tabel data contoh risiko

Komponen kedua di halaman hasil tugas risiko adalah tabel data contoh. Tindakan ini menampilkan kombinasi quasi-ID untuk nilai l-diversity target tertentu.

Kolom pertama tabel mencantumkan nilai k-anonymity. Klik nilai l-diversity untuk melihat data sampel yang sesuai yang perlu dihapus untuk mencapai nilai tersebut.

Kolom kedua menampilkan potensi kehilangan data masing-masing baris unik dan kombinasi quasi-ID untuk mencapai nilai l-diversity yang dipilih, serta jumlah grup dengan setidaknya l atribut sensitif dan jumlah total kumpulan data.

Kolom terakhir menampilkan contoh grup yang memiliki kombinasi quasi-ID yang sama, beserta jumlah data yang ada untuk kombinasi tersebut.

Mengambil detail tugas menggunakan REST

Untuk mengambil hasil tugas analisis risiko l-diversity menggunakan REST API, kirim permintaan GET berikut ke resource projects.dlpJobs. Ganti PROJECT_ID dengan project ID Anda dan JOB_ID dengan ID tugas yang ingin Anda dapatkan hasilnya. ID tugas ditampilkan saat Anda memulai tugas, dan juga dapat diambil dengan mencantumkan semua tugas.

GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID

Permintaan menampilkan objek JSON yang berisi instance tugas. Hasil analisis berada di dalam kunci "riskDetails", dalam objek AnalyzeDataSourceRiskDetails. Untuk informasi selengkapnya, lihat referensi API untuk resource DlpJob.

Langkah selanjutnya

  • Pelajari cara menghitung nilai k-anonymity untuk set data.
  • Pelajari cara menghitung nilai k-map untuk set data.
  • Pelajari cara menghitung nilai δ-kehadiran untuk set data.