Vertex AI V1 API - Class Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig (v0.63.0)

Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig.

Configuration for vector indexing.

Inherits

  • Object

Extended By

  • Google::Protobuf::MessageExts::ClassMethods

Includes

  • Google::Protobuf::MessageExts

Methods

#brute_force_config

def brute_force_config() -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Returns
  • (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig) — Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.

    Note: The following fields are mutually exclusive: brute_force_config, tree_ah_config. If a field in that set is populated, all other fields in the set will automatically be cleared.

#brute_force_config=

def brute_force_config=(value) -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig
Parameter
  • value (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig) — Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.

    Note: The following fields are mutually exclusive: brute_force_config, tree_ah_config. If a field in that set is populated, all other fields in the set will automatically be cleared.

Returns
  • (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::BruteForceConfig) — Optional. Configuration options for using brute force search, which simply implements the standard linear search in the database for each query. It is primarily meant for benchmarking and to generate the ground truth for approximate search.

    Note: The following fields are mutually exclusive: brute_force_config, tree_ah_config. If a field in that set is populated, all other fields in the set will automatically be cleared.

#crowding_column

def crowding_column() -> ::String
Returns

#crowding_column=

def crowding_column=(value) -> ::String
Parameter
Returns

#distance_measure_type

def distance_measure_type() -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Returns

#distance_measure_type=

def distance_measure_type=(value) -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::DistanceMeasureType
Parameter
Returns

#embedding_column

def embedding_column() -> ::String
Returns
  • (::String) — Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.

#embedding_column=

def embedding_column=(value) -> ::String
Parameter
  • value (::String) — Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.
Returns
  • (::String) — Optional. Column of embedding. This column contains the source data to create index for vector search. embedding_column must be set when using vector search.

#embedding_dimension

def embedding_dimension() -> ::Integer
Returns
  • (::Integer) — Optional. The number of dimensions of the input embedding.

#embedding_dimension=

def embedding_dimension=(value) -> ::Integer
Parameter
  • value (::Integer) — Optional. The number of dimensions of the input embedding.
Returns
  • (::Integer) — Optional. The number of dimensions of the input embedding.

#filter_columns

def filter_columns() -> ::Array<::String>
Returns
  • (::Array<::String>) — Optional. Columns of features that're used to filter vector search results.

#filter_columns=

def filter_columns=(value) -> ::Array<::String>
Parameter
  • value (::Array<::String>) — Optional. Columns of features that're used to filter vector search results.
Returns
  • (::Array<::String>) — Optional. Columns of features that're used to filter vector search results.

#tree_ah_config

def tree_ah_config() -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Returns
  • (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig) — Optional. Configuration options for the tree-AH algorithm (Shallow tree

    • Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396

    Note: The following fields are mutually exclusive: tree_ah_config, brute_force_config. If a field in that set is populated, all other fields in the set will automatically be cleared.

#tree_ah_config=

def tree_ah_config=(value) -> ::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig
Parameter
  • value (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig) — Optional. Configuration options for the tree-AH algorithm (Shallow tree

    • Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396

    Note: The following fields are mutually exclusive: tree_ah_config, brute_force_config. If a field in that set is populated, all other fields in the set will automatically be cleared.

Returns
  • (::Google::Cloud::AIPlatform::V1::FeatureView::IndexConfig::TreeAHConfig) — Optional. Configuration options for the tree-AH algorithm (Shallow tree

    • Asymmetric Hashing). Please refer to this paper for more details: https://arxiv.org/abs/1908.10396

    Note: The following fields are mutually exclusive: tree_ah_config, brute_force_config. If a field in that set is populated, all other fields in the set will automatically be cleared.