- 0.62.0 (latest)
- 0.61.0
- 0.60.0
- 0.59.0
- 0.58.0
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.49.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.37.0
- 0.36.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.0
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.1
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
- 0.1.0
Reference documentation and code samples for the Vertex AI V1 API class Google::Cloud::AIPlatform::V1::ModelMonitoringObjectiveConfig::TrainingPredictionSkewDetectionConfig.
The config for Training & Prediction data skew detection. It specifies the training dataset sources and the skew detection parameters.
Inherits
- Object
Extended By
- Google::Protobuf::MessageExts::ClassMethods
Includes
- Google::Protobuf::MessageExts
Methods
#attribution_score_skew_thresholds
def attribution_score_skew_thresholds() -> ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}
Returns
- (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
#attribution_score_skew_thresholds=
def attribution_score_skew_thresholds=(value) -> ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}
Parameter
- value (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
Returns
- (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. The threshold here is against attribution score distance between the training and prediction feature.
#default_skew_threshold
def default_skew_threshold() -> ::Google::Cloud::AIPlatform::V1::ThresholdConfig
Returns
- (::Google::Cloud::AIPlatform::V1::ThresholdConfig) — Skew anomaly detection threshold used by all features. When the per-feature thresholds are not set, this field can be used to specify a threshold for all features.
#default_skew_threshold=
def default_skew_threshold=(value) -> ::Google::Cloud::AIPlatform::V1::ThresholdConfig
Parameter
- value (::Google::Cloud::AIPlatform::V1::ThresholdConfig) — Skew anomaly detection threshold used by all features. When the per-feature thresholds are not set, this field can be used to specify a threshold for all features.
Returns
- (::Google::Cloud::AIPlatform::V1::ThresholdConfig) — Skew anomaly detection threshold used by all features. When the per-feature thresholds are not set, this field can be used to specify a threshold for all features.
#skew_thresholds
def skew_thresholds() -> ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}
Returns
- (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
#skew_thresholds=
def skew_thresholds=(value) -> ::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}
Parameter
- value (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.
Returns
- (::Google::Protobuf::Map{::String => ::Google::Cloud::AIPlatform::V1::ThresholdConfig}) — Key is the feature name and value is the threshold. If a feature needs to be monitored for skew, a value threshold must be configured for that feature. The threshold here is against feature distribution distance between the training and prediction feature.