A service for creating and managing Vertex AI's jobs. v1
Package
@google-cloud/aiplatformConstructors
(constructor)(opts, gaxInstance)
constructor(opts?: ClientOptions, gaxInstance?: typeof gax | typeof gax.fallback);
Construct an instance of JobServiceClient.
Name | Description |
opts |
ClientOptions
|
gaxInstance |
typeof gax | typeof gax.fallback
: loaded instance of |
Properties
apiEndpoint
static get apiEndpoint(): string;
The DNS address for this API service - same as servicePath(), exists for compatibility reasons.
auth
auth: gax.GoogleAuth;
descriptors
descriptors: Descriptors;
iamClient
iamClient: IamClient;
innerApiCalls
innerApiCalls: {
[name: string]: Function;
};
jobServiceStub
jobServiceStub?: Promise<{
[name: string]: Function;
}>;
locationsClient
locationsClient: LocationsClient;
operationsClient
operationsClient: gax.OperationsClient;
pathTemplates
pathTemplates: {
[name: string]: gax.PathTemplate;
};
port
static get port(): number;
The port for this API service.
scopes
static get scopes(): string[];
The scopes needed to make gRPC calls for every method defined in this service.
servicePath
static get servicePath(): string;
The DNS address for this API service.
warn
warn: (code: string, message: string, warnType?: string) => void;
Methods
annotationPath(project, location, dataset, dataItem, annotation)
annotationPath(project: string, location: string, dataset: string, dataItem: string, annotation: string): string;
Return a fully-qualified annotation resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
dataItem |
string
|
annotation |
string
|
Type | Description |
string | {string} Resource name string. |
annotationSpecPath(project, location, dataset, annotationSpec)
annotationSpecPath(project: string, location: string, dataset: string, annotationSpec: string): string;
Return a fully-qualified annotationSpec resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
annotationSpec |
string
|
Type | Description |
string | {string} Resource name string. |
artifactPath(project, location, metadataStore, artifact)
artifactPath(project: string, location: string, metadataStore: string, artifact: string): string;
Return a fully-qualified artifact resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
artifact |
string
|
Type | Description |
string | {string} Resource name string. |
batchPredictionJobPath(project, location, batchPredictionJob)
batchPredictionJobPath(project: string, location: string, batchPredictionJob: string): string;
Return a fully-qualified batchPredictionJob resource name string.
Name | Description |
project |
string
|
location |
string
|
batchPredictionJob |
string
|
Type | Description |
string | {string} Resource name string. |
cancelBatchPredictionJob(request, options)
cancelBatchPredictionJob(request?: protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | undefined),
{} | undefined
]>;
Cancels a BatchPredictionJob.
Starts asynchronous cancellation on the BatchPredictionJob. The server makes the best effort to cancel the job, but success is not guaranteed. Clients can use or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On a successful cancellation, the BatchPredictionJob is not deleted;instead its is set to CANCELLED
. Any files already outputted by the job are not deleted.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the BatchPredictionJob to cancel.
* Format:
* `projects/{project}/locations/{location}/batchPredictionJobs/{batch_prediction_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCancelBatchPredictionJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.cancelBatchPredictionJob(request);
console.log(response);
}
callCancelBatchPredictionJob();
cancelBatchPredictionJob(request, options, callback)
cancelBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelBatchPredictionJob(request, callback)
cancelBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelCustomJob(request, options)
cancelCustomJob(request?: protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | undefined,
{} | undefined
]>;
Cancels a CustomJob. Starts asynchronous cancellation on the CustomJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the CustomJob is not deleted; instead it becomes a job with a value with a of 1, corresponding to Code.CANCELLED
, and is set to CANCELLED
.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the CustomJob to cancel.
* Format:
* `projects/{project}/locations/{location}/customJobs/{custom_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCancelCustomJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.cancelCustomJob(request);
console.log(response);
}
callCancelCustomJob();
cancelCustomJob(request, options, callback)
cancelCustomJob(request: protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelCustomJob(request, callback)
cancelCustomJob(request: protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelDataLabelingJob(request, options)
cancelDataLabelingJob(request?: protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | undefined),
{} | undefined
]>;
Cancels a DataLabelingJob. Success of cancellation is not guaranteed.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the DataLabelingJob.
* Format:
* `projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCancelDataLabelingJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.cancelDataLabelingJob(request);
console.log(response);
}
callCancelDataLabelingJob();
cancelDataLabelingJob(request, options, callback)
cancelDataLabelingJob(request: protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelDataLabelingJob(request, callback)
cancelDataLabelingJob(request: protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelHyperparameterTuningJob(request, options)
cancelHyperparameterTuningJob(request?: protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | undefined),
{} | undefined
]>;
Cancels a HyperparameterTuningJob. Starts asynchronous cancellation on the HyperparameterTuningJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the HyperparameterTuningJob is not deleted; instead it becomes a job with a value with a of 1, corresponding to Code.CANCELLED
, and is set to CANCELLED
.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the HyperparameterTuningJob to cancel.
* Format:
* `projects/{project}/locations/{location}/hyperparameterTuningJobs/{hyperparameter_tuning_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCancelHyperparameterTuningJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.cancelHyperparameterTuningJob(request);
console.log(response);
}
callCancelHyperparameterTuningJob();
cancelHyperparameterTuningJob(request, options, callback)
cancelHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelHyperparameterTuningJob(request, callback)
cancelHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelNasJob(request, options)
cancelNasJob(request?: protos.google.cloud.aiplatform.v1.ICancelNasJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | undefined,
{} | undefined
]>;
Cancels a NasJob. Starts asynchronous cancellation on the NasJob. The server makes a best effort to cancel the job, but success is not guaranteed. Clients can use or other methods to check whether the cancellation succeeded or whether the job completed despite cancellation. On successful cancellation, the NasJob is not deleted; instead it becomes a job with a value with a of 1, corresponding to Code.CANCELLED
, and is set to CANCELLED
.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelNasJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasJob to cancel.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCancelNasJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.cancelNasJob(request);
console.log(response);
}
callCancelNasJob();
cancelNasJob(request, options, callback)
cancelNasJob(request: protos.google.cloud.aiplatform.v1.ICancelNasJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelNasJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelNasJob(request, callback)
cancelNasJob(request: protos.google.cloud.aiplatform.v1.ICancelNasJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICancelNasJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.ICancelNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
cancelOperation(request, options, callback)
cancelOperation(request: protos.google.longrunning.CancelOperationRequest, options?: gax.CallOptions | Callback<protos.google.protobuf.Empty, protos.google.longrunning.CancelOperationRequest, {} | undefined | null>, callback?: Callback<protos.google.longrunning.CancelOperationRequest, protos.google.protobuf.Empty, {} | undefined | null>): Promise<protos.google.protobuf.Empty>;
Starts asynchronous cancellation on a long-running operation. The server makes a best effort to cancel the operation, but success is not guaranteed. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED
. Clients can use or other methods to check whether the cancellation succeeded or whether the operation completed despite cancellation. On successful cancellation, the operation is not deleted; instead, it becomes an operation with an value with a of 1, corresponding to Code.CANCELLED
.
Name | Description |
request |
protos.google.longrunning.CancelOperationRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<protos.google.protobuf.Empty, protos.google.longrunning.CancelOperationRequest, {} | undefined | null>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<protos.google.longrunning.CancelOperationRequest, protos.google.protobuf.Empty, {} | undefined | null>
The function which will be called with the result of the API call. {Promise} - The promise which resolves when API call finishes. The promise has a method named "cancel" which cancels the ongoing API call. |
Type | Description |
Promise<protos.google.protobuf.Empty> |
const client = longrunning.operationsClient();
await client.cancelOperation({name: ''});
checkDeleteBatchPredictionJobProgress(name)
checkDeleteBatchPredictionJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteBatchPredictionJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the BatchPredictionJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/batchPredictionJobs/{batch_prediction_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteBatchPredictionJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteBatchPredictionJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteBatchPredictionJob();
checkDeleteCustomJobProgress(name)
checkDeleteCustomJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteCustomJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the CustomJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/customJobs/{custom_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteCustomJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteCustomJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteCustomJob();
checkDeleteDataLabelingJobProgress(name)
checkDeleteDataLabelingJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteDataLabelingJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the DataLabelingJob to be deleted.
* Format:
* `projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteDataLabelingJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteDataLabelingJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteDataLabelingJob();
checkDeleteHyperparameterTuningJobProgress(name)
checkDeleteHyperparameterTuningJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteHyperparameterTuningJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the HyperparameterTuningJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/hyperparameterTuningJobs/{hyperparameter_tuning_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteHyperparameterTuningJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteHyperparameterTuningJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteHyperparameterTuningJob();
checkDeleteModelDeploymentMonitoringJobProgress(name)
checkDeleteModelDeploymentMonitoringJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteModelDeploymentMonitoringJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model monitoring job to delete.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteModelDeploymentMonitoringJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteModelDeploymentMonitoringJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteModelDeploymentMonitoringJob();
checkDeleteNasJobProgress(name)
checkDeleteNasJobProgress(name: string): Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>>;
Check the status of the long running operation returned by deleteNasJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.protobuf.Empty, protos.google.cloud.aiplatform.v1.DeleteOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteNasJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteNasJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteNasJob();
checkUpdateModelDeploymentMonitoringJobProgress(name)
checkUpdateModelDeploymentMonitoringJobProgress(name: string): Promise<LROperation<protos.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.UpdateModelDeploymentMonitoringJobOperationMetadata>>;
Check the status of the long running operation returned by updateModelDeploymentMonitoringJob()
.
Name | Description |
name |
string
The operation name that will be passed. |
Type | Description |
Promise<LROperation<protos.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.UpdateModelDeploymentMonitoringJobOperationMetadata>> | {Promise} - The promise which resolves to an object. The decoded operation object has result and metadata field to get information from. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#long-running-operations) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The model monitoring configuration which replaces the resource on
* the server.
*/
// const modelDeploymentMonitoringJob = {}
/**
* Required. The update mask is used to specify the fields to be overwritten
* in the ModelDeploymentMonitoringJob resource by the update. The fields
* specified in the update_mask are relative to the resource, not the full
* request. A field will be overwritten if it is in the mask. If the user does
* not provide a mask then only the non-empty fields present in the request
* will be overwritten. Set the update_mask to `*` to override all fields. For
* the objective config, the user can either provide the update mask for
* model_deployment_monitoring_objective_configs or any combination of its
* nested fields, such as:
* model_deployment_monitoring_objective_configs.objective_config.training_dataset.
* Updatable fields:
* * `display_name`
* * `model_deployment_monitoring_schedule_config`
* * `model_monitoring_alert_config`
* * `logging_sampling_strategy`
* * `labels`
* * `log_ttl`
* * `enable_monitoring_pipeline_logs`
* . and
* * `model_deployment_monitoring_objective_configs`
* . or
* * `model_deployment_monitoring_objective_configs.objective_config.training_dataset`
* * `model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config`
* * `model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config`
*/
// const updateMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callUpdateModelDeploymentMonitoringJob() {
// Construct request
const request = {
modelDeploymentMonitoringJob,
updateMask,
};
// Run request
const [operation] = await aiplatformClient.updateModelDeploymentMonitoringJob(request);
const [response] = await operation.promise();
console.log(response);
}
callUpdateModelDeploymentMonitoringJob();
close()
close(): Promise<void>;
Terminate the gRPC channel and close the client.
The client will no longer be usable and all future behavior is undefined.
Type | Description |
Promise<void> | {Promise} A promise that resolves when the client is closed. |
contextPath(project, location, metadataStore, context)
contextPath(project: string, location: string, metadataStore: string, context: string): string;
Return a fully-qualified context resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
context |
string
|
Type | Description |
string | {string} Resource name string. |
createBatchPredictionJob(request, options)
createBatchPredictionJob(request?: protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob,
(protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | undefined),
{} | undefined
]>;
Creates a BatchPredictionJob. A BatchPredictionJob once created will right away be attempted to start.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob,
(protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the
* BatchPredictionJob in. Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The BatchPredictionJob to create.
*/
// const batchPredictionJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateBatchPredictionJob() {
// Construct request
const request = {
parent,
batchPredictionJob,
};
// Run request
const response = await aiplatformClient.createBatchPredictionJob(request);
console.log(response);
}
callCreateBatchPredictionJob();
createBatchPredictionJob(request, options, callback)
createBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createBatchPredictionJob(request, callback)
createBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.ICreateBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createCustomJob(request, options)
createCustomJob(request?: protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob,
protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | undefined,
{} | undefined
]>;
Creates a CustomJob. A created CustomJob right away will be attempted to be run.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob,
protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the CustomJob in.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The CustomJob to create.
*/
// const customJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateCustomJob() {
// Construct request
const request = {
parent,
customJob,
};
// Run request
const response = await aiplatformClient.createCustomJob(request);
console.log(response);
}
callCreateCustomJob();
createCustomJob(request, options, callback)
createCustomJob(request: protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createCustomJob(request, callback)
createCustomJob(request: protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.ICreateCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createDataLabelingJob(request, options)
createDataLabelingJob(request?: protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob,
(protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | undefined),
{} | undefined
]>;
Creates a DataLabelingJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob,
(protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The parent of the DataLabelingJob.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The DataLabelingJob to create.
*/
// const dataLabelingJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateDataLabelingJob() {
// Construct request
const request = {
parent,
dataLabelingJob,
};
// Run request
const response = await aiplatformClient.createDataLabelingJob(request);
console.log(response);
}
callCreateDataLabelingJob();
createDataLabelingJob(request, options, callback)
createDataLabelingJob(request: protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createDataLabelingJob(request, callback)
createDataLabelingJob(request: protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.ICreateDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createHyperparameterTuningJob(request, options)
createHyperparameterTuningJob(request?: protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob,
(protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | undefined),
{} | undefined
]>;
Creates a HyperparameterTuningJob
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob,
(protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the
* HyperparameterTuningJob in. Format:
* `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The HyperparameterTuningJob to create.
*/
// const hyperparameterTuningJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateHyperparameterTuningJob() {
// Construct request
const request = {
parent,
hyperparameterTuningJob,
};
// Run request
const response = await aiplatformClient.createHyperparameterTuningJob(request);
console.log(response);
}
callCreateHyperparameterTuningJob();
createHyperparameterTuningJob(request, options, callback)
createHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createHyperparameterTuningJob(request, callback)
createHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.ICreateHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createModelDeploymentMonitoringJob(request, options)
createModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob,
(protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]>;
Creates a ModelDeploymentMonitoringJob. It will run periodically on a configured interval.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob,
(protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The parent of the ModelDeploymentMonitoringJob.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The ModelDeploymentMonitoringJob to create
*/
// const modelDeploymentMonitoringJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateModelDeploymentMonitoringJob() {
// Construct request
const request = {
parent,
modelDeploymentMonitoringJob,
};
// Run request
const response = await aiplatformClient.createModelDeploymentMonitoringJob(request);
console.log(response);
}
callCreateModelDeploymentMonitoringJob();
createModelDeploymentMonitoringJob(request, options, callback)
createModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createModelDeploymentMonitoringJob(request, callback)
createModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.ICreateModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createNasJob(request, options)
createNasJob(request?: protos.google.cloud.aiplatform.v1.ICreateNasJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.INasJob,
protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | undefined,
{} | undefined
]>;
Creates a NasJob
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateNasJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.INasJob,
protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to create the NasJob in.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* Required. The NasJob to create.
*/
// const nasJob = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callCreateNasJob() {
// Construct request
const request = {
parent,
nasJob,
};
// Run request
const response = await aiplatformClient.createNasJob(request);
console.log(response);
}
callCreateNasJob();
createNasJob(request, options, callback)
createNasJob(request: protos.google.cloud.aiplatform.v1.ICreateNasJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateNasJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
createNasJob(request, callback)
createNasJob(request: protos.google.cloud.aiplatform.v1.ICreateNasJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ICreateNasJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.ICreateNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
customJobPath(project, location, customJob)
customJobPath(project: string, location: string, customJob: string): string;
Return a fully-qualified customJob resource name string.
Name | Description |
project |
string
|
location |
string
|
customJob |
string
|
Type | Description |
string | {string} Resource name string. |
dataItemPath(project, location, dataset, dataItem)
dataItemPath(project: string, location: string, dataset: string, dataItem: string): string;
Return a fully-qualified dataItem resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
dataItem |
string
|
Type | Description |
string | {string} Resource name string. |
dataLabelingJobPath(project, location, dataLabelingJob)
dataLabelingJobPath(project: string, location: string, dataLabelingJob: string): string;
Return a fully-qualified dataLabelingJob resource name string.
Name | Description |
project |
string
|
location |
string
|
dataLabelingJob |
string
|
Type | Description |
string | {string} Resource name string. |
datasetPath(project, location, dataset)
datasetPath(project: string, location: string, dataset: string): string;
Return a fully-qualified dataset resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
Type | Description |
string | {string} Resource name string. |
deleteBatchPredictionJob(request, options)
deleteBatchPredictionJob(request?: protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a BatchPredictionJob. Can only be called on jobs that already finished.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the BatchPredictionJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/batchPredictionJobs/{batch_prediction_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteBatchPredictionJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteBatchPredictionJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteBatchPredictionJob();
deleteBatchPredictionJob(request, options, callback)
deleteBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteBatchPredictionJob(request, callback)
deleteBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteBatchPredictionJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteCustomJob(request, options)
deleteCustomJob(request?: protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a CustomJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the CustomJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/customJobs/{custom_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteCustomJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteCustomJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteCustomJob();
deleteCustomJob(request, options, callback)
deleteCustomJob(request: protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteCustomJob(request, callback)
deleteCustomJob(request: protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteCustomJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteDataLabelingJob(request, options)
deleteDataLabelingJob(request?: protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a DataLabelingJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the DataLabelingJob to be deleted.
* Format:
* `projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteDataLabelingJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteDataLabelingJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteDataLabelingJob();
deleteDataLabelingJob(request, options, callback)
deleteDataLabelingJob(request: protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteDataLabelingJob(request, callback)
deleteDataLabelingJob(request: protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteDataLabelingJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteHyperparameterTuningJob(request, options)
deleteHyperparameterTuningJob(request?: protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a HyperparameterTuningJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the HyperparameterTuningJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/hyperparameterTuningJobs/{hyperparameter_tuning_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteHyperparameterTuningJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteHyperparameterTuningJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteHyperparameterTuningJob();
deleteHyperparameterTuningJob(request, options, callback)
deleteHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteHyperparameterTuningJob(request, callback)
deleteHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteHyperparameterTuningJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteModelDeploymentMonitoringJob(request, options)
deleteModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a ModelDeploymentMonitoringJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the model monitoring job to delete.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteModelDeploymentMonitoringJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteModelDeploymentMonitoringJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteModelDeploymentMonitoringJob();
deleteModelDeploymentMonitoringJob(request, options, callback)
deleteModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteModelDeploymentMonitoringJob(request, callback)
deleteModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteModelDeploymentMonitoringJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteNasJob(request, options)
deleteNasJob(request?: protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Deletes a NasJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasJob resource to be deleted.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callDeleteNasJob() {
// Construct request
const request = {
name,
};
// Run request
const [operation] = await aiplatformClient.deleteNasJob(request);
const [response] = await operation.promise();
console.log(response);
}
callDeleteNasJob();
deleteNasJob(request, options, callback)
deleteNasJob(request: protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteNasJob(request, callback)
deleteNasJob(request: protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest, callback: Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IDeleteNasJobRequest
|
callback |
Callback<LROperation<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IDeleteOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
deleteOperation(request, options, callback)
deleteOperation(request: protos.google.longrunning.DeleteOperationRequest, options?: gax.CallOptions | Callback<protos.google.protobuf.Empty, protos.google.longrunning.DeleteOperationRequest, {} | null | undefined>, callback?: Callback<protos.google.protobuf.Empty, protos.google.longrunning.DeleteOperationRequest, {} | null | undefined>): Promise<protos.google.protobuf.Empty>;
Deletes a long-running operation. This method indicates that the client is no longer interested in the operation result. It does not cancel the operation. If the server doesn't support this method, it returns google.rpc.Code.UNIMPLEMENTED
.
Name | Description |
request |
protos.google.longrunning.DeleteOperationRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<protos.google.protobuf.Empty, protos.google.longrunning.DeleteOperationRequest, {} | null | undefined>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<protos.google.protobuf.Empty, protos.google.longrunning.DeleteOperationRequest, {} | null | undefined>
The function which will be called with the result of the API call. {Promise} - The promise which resolves when API call finishes. The promise has a method named "cancel" which cancels the ongoing API call. |
Type | Description |
Promise<protos.google.protobuf.Empty> |
const client = longrunning.operationsClient();
await client.deleteOperation({name: ''});
endpointPath(project, location, endpoint)
endpointPath(project: string, location: string, endpoint: string): string;
Return a fully-qualified endpoint resource name string.
Name | Description |
project |
string
|
location |
string
|
endpoint |
string
|
Type | Description |
string | {string} Resource name string. |
entityTypePath(project, location, featurestore, entityType)
entityTypePath(project: string, location: string, featurestore: string, entityType: string): string;
Return a fully-qualified entityType resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
entityType |
string
|
Type | Description |
string | {string} Resource name string. |
executionPath(project, location, metadataStore, execution)
executionPath(project: string, location: string, metadataStore: string, execution: string): string;
Return a fully-qualified execution resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
execution |
string
|
Type | Description |
string | {string} Resource name string. |
featurePath(project, location, featurestore, entityType, feature)
featurePath(project: string, location: string, featurestore: string, entityType: string, feature: string): string;
Return a fully-qualified feature resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
entityType |
string
|
feature |
string
|
Type | Description |
string | {string} Resource name string. |
featurestorePath(project, location, featurestore)
featurestorePath(project: string, location: string, featurestore: string): string;
Return a fully-qualified featurestore resource name string.
Name | Description |
project |
string
|
location |
string
|
featurestore |
string
|
Type | Description |
string | {string} Resource name string. |
getBatchPredictionJob(request, options)
getBatchPredictionJob(request?: protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob,
(protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | undefined),
{} | undefined
]>;
Gets a BatchPredictionJob
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob,
(protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the BatchPredictionJob resource.
* Format:
* `projects/{project}/locations/{location}/batchPredictionJobs/{batch_prediction_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetBatchPredictionJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getBatchPredictionJob(request);
console.log(response);
}
callGetBatchPredictionJob();
getBatchPredictionJob(request, options, callback)
getBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getBatchPredictionJob(request, callback)
getBatchPredictionJob(request: protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IBatchPredictionJob, protos.google.cloud.aiplatform.v1.IGetBatchPredictionJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getCustomJob(request, options)
getCustomJob(request?: protos.google.cloud.aiplatform.v1.IGetCustomJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob,
protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | undefined,
{} | undefined
]>;
Gets a CustomJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetCustomJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob,
protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the CustomJob resource.
* Format:
* `projects/{project}/locations/{location}/customJobs/{custom_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetCustomJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getCustomJob(request);
console.log(response);
}
callGetCustomJob();
getCustomJob(request, options, callback)
getCustomJob(request: protos.google.cloud.aiplatform.v1.IGetCustomJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetCustomJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getCustomJob(request, callback)
getCustomJob(request: protos.google.cloud.aiplatform.v1.IGetCustomJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetCustomJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.ICustomJob, protos.google.cloud.aiplatform.v1.IGetCustomJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getDataLabelingJob(request, options)
getDataLabelingJob(request?: protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob,
protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | undefined,
{} | undefined
]>;
Gets a DataLabelingJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob,
protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the DataLabelingJob.
* Format:
* `projects/{project}/locations/{location}/dataLabelingJobs/{data_labeling_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetDataLabelingJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getDataLabelingJob(request);
console.log(response);
}
callGetDataLabelingJob();
getDataLabelingJob(request, options, callback)
getDataLabelingJob(request: protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getDataLabelingJob(request, callback)
getDataLabelingJob(request: protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IDataLabelingJob, protos.google.cloud.aiplatform.v1.IGetDataLabelingJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getHyperparameterTuningJob(request, options)
getHyperparameterTuningJob(request?: protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob,
(protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | undefined),
{} | undefined
]>;
Gets a HyperparameterTuningJob
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob,
(protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the HyperparameterTuningJob resource.
* Format:
* `projects/{project}/locations/{location}/hyperparameterTuningJobs/{hyperparameter_tuning_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetHyperparameterTuningJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getHyperparameterTuningJob(request);
console.log(response);
}
callGetHyperparameterTuningJob();
getHyperparameterTuningJob(request, options, callback)
getHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getHyperparameterTuningJob(request, callback)
getHyperparameterTuningJob(request: protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob, protos.google.cloud.aiplatform.v1.IGetHyperparameterTuningJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getIamPolicy(request, options, callback)
getIamPolicy(request: IamProtos.google.iam.v1.GetIamPolicyRequest, options?: gax.CallOptions | Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.GetIamPolicyRequest | null | undefined, {} | null | undefined>, callback?: Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.GetIamPolicyRequest | null | undefined, {} | null | undefined>): Promise<IamProtos.google.iam.v1.Policy>;
Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set.
Name | Description |
request |
IamProtos.google.iam.v1.GetIamPolicyRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.GetIamPolicyRequest | null | undefined, {} | null | undefined>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.GetIamPolicyRequest | null | undefined, {} | null | undefined>
The function which will be called with the result of the API call. The second parameter to the callback is an object representing . |
Type | Description |
Promise<IamProtos.google.iam.v1.Policy> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . The promise has a method named "cancel" which cancels the ongoing API call. |
getLocation(request, options, callback)
getLocation(request: LocationProtos.google.cloud.location.IGetLocationRequest, options?: gax.CallOptions | Callback<LocationProtos.google.cloud.location.ILocation, LocationProtos.google.cloud.location.IGetLocationRequest | null | undefined, {} | null | undefined>, callback?: Callback<LocationProtos.google.cloud.location.ILocation, LocationProtos.google.cloud.location.IGetLocationRequest | null | undefined, {} | null | undefined>): Promise<LocationProtos.google.cloud.location.ILocation>;
Gets information about a location.
Name | Description |
request |
LocationProtos.google.cloud.location.IGetLocationRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<LocationProtos.google.cloud.location.ILocation, LocationProtos.google.cloud.location.IGetLocationRequest | null | undefined, {} | null | undefined>
Call options. See CallOptions for more details. |
callback |
Callback<LocationProtos.google.cloud.location.ILocation, LocationProtos.google.cloud.location.IGetLocationRequest | null | undefined, {} | null | undefined>
|
Type | Description |
Promise<LocationProtos.google.cloud.location.ILocation> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
const [response] = await client.getLocation(request);
getModelDeploymentMonitoringJob(request, options)
getModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob,
(protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]>;
Gets a ModelDeploymentMonitoringJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob,
(protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the ModelDeploymentMonitoringJob.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetModelDeploymentMonitoringJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getModelDeploymentMonitoringJob(request);
console.log(response);
}
callGetModelDeploymentMonitoringJob();
getModelDeploymentMonitoringJob(request, options, callback)
getModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getModelDeploymentMonitoringJob(request, callback)
getModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IGetModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getNasJob(request, options)
getNasJob(request?: protos.google.cloud.aiplatform.v1.IGetNasJobRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.INasJob,
protos.google.cloud.aiplatform.v1.IGetNasJobRequest | undefined,
{} | undefined
]>;
Gets a NasJob
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.INasJob,
protos.google.cloud.aiplatform.v1.IGetNasJobRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasJob resource.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetNasJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getNasJob(request);
console.log(response);
}
callGetNasJob();
getNasJob(request, options, callback)
getNasJob(request: protos.google.cloud.aiplatform.v1.IGetNasJobRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.IGetNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.IGetNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getNasJob(request, callback)
getNasJob(request: protos.google.cloud.aiplatform.v1.IGetNasJobRequest, callback: Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.IGetNasJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasJobRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasJob, protos.google.cloud.aiplatform.v1.IGetNasJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getNasTrialDetail(request, options)
getNasTrialDetail(request?: protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.INasTrialDetail,
protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | undefined,
{} | undefined
]>;
Gets a NasTrialDetail.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.INasTrialDetail,
protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasTrialDetail resource.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}/nasTrialDetails/{nas_trial_detail}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callGetNasTrialDetail() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.getNasTrialDetail(request);
console.log(response);
}
callGetNasTrialDetail();
getNasTrialDetail(request, options, callback)
getNasTrialDetail(request: protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest, options: CallOptions, callback: Callback<protos.google.cloud.aiplatform.v1.INasTrialDetail, protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasTrialDetail, protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getNasTrialDetail(request, callback)
getNasTrialDetail(request: protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest, callback: Callback<protos.google.cloud.aiplatform.v1.INasTrialDetail, protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest
|
callback |
Callback<protos.google.cloud.aiplatform.v1.INasTrialDetail, protos.google.cloud.aiplatform.v1.IGetNasTrialDetailRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
getOperation(request, options, callback)
getOperation(request: protos.google.longrunning.GetOperationRequest, options?: gax.CallOptions | Callback<protos.google.longrunning.Operation, protos.google.longrunning.GetOperationRequest, {} | null | undefined>, callback?: Callback<protos.google.longrunning.Operation, protos.google.longrunning.GetOperationRequest, {} | null | undefined>): Promise<[protos.google.longrunning.Operation]>;
Gets the latest state of a long-running operation. Clients can use this method to poll the operation result at intervals as recommended by the API service.
Name | Description |
request |
protos.google.longrunning.GetOperationRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<protos.google.longrunning.Operation, protos.google.longrunning.GetOperationRequest, {} | null | undefined>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<protos.google.longrunning.Operation, protos.google.longrunning.GetOperationRequest, {} | null | undefined>
The function which will be called with the result of the API call. The second parameter to the callback is an object representing . {Promise} - The promise which resolves to an array. The first element of the array is an object representing . The promise has a method named "cancel" which cancels the ongoing API call. |
Type | Description |
Promise<[protos.google.longrunning.Operation]> |
const client = longrunning.operationsClient();
const name = '';
const [response] = await client.getOperation({name});
// doThingsWith(response)
getProjectId()
getProjectId(): Promise<string>;
Type | Description |
Promise<string> |
getProjectId(callback)
getProjectId(callback: Callback<string, undefined, undefined>): void;
Name | Description |
callback |
Callback<string, undefined, undefined>
|
Type | Description |
void |
hyperparameterTuningJobPath(project, location, hyperparameterTuningJob)
hyperparameterTuningJobPath(project: string, location: string, hyperparameterTuningJob: string): string;
Return a fully-qualified hyperparameterTuningJob resource name string.
Name | Description |
project |
string
|
location |
string
|
hyperparameterTuningJob |
string
|
Type | Description |
string | {string} Resource name string. |
indexEndpointPath(project, location, indexEndpoint)
indexEndpointPath(project: string, location: string, indexEndpoint: string): string;
Return a fully-qualified indexEndpoint resource name string.
Name | Description |
project |
string
|
location |
string
|
indexEndpoint |
string
|
Type | Description |
string | {string} Resource name string. |
indexPath(project, location, index)
indexPath(project: string, location: string, index: string): string;
Return a fully-qualified index resource name string.
Name | Description |
project |
string
|
location |
string
|
index |
string
|
Type | Description |
string | {string} Resource name string. |
initialize()
initialize(): Promise<{
[name: string]: Function;
}>;
Initialize the client. Performs asynchronous operations (such as authentication) and prepares the client. This function will be called automatically when any class method is called for the first time, but if you need to initialize it before calling an actual method, feel free to call initialize() directly.
You can await on this method if you want to make sure the client is initialized.
Type | Description |
Promise<{
[name: string]: Function;
}> | {Promise} A promise that resolves to an authenticated service stub. |
listBatchPredictionJobs(request, options)
listBatchPredictionJobs(request?: protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob[],
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse
]>;
Lists BatchPredictionJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IBatchPredictionJob[],
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listBatchPredictionJobs(request, options, callback)
listBatchPredictionJobs(request: protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IBatchPredictionJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IBatchPredictionJob>
|
Type | Description |
void |
listBatchPredictionJobs(request, callback)
listBatchPredictionJobs(request: protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IBatchPredictionJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IBatchPredictionJob>
|
Type | Description |
void |
listBatchPredictionJobsAsync(request, options)
listBatchPredictionJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.IBatchPredictionJob>;
Equivalent to listBatchPredictionJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.IBatchPredictionJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to list the BatchPredictionJobs
* from. Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `model_display_name` supports `=`, `!=` comparisons.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
* Typically obtained via
* ListBatchPredictionJobsResponse.next_page_token google.cloud.aiplatform.v1.ListBatchPredictionJobsResponse.next_page_token
* of the previous
* JobService.ListBatchPredictionJobs google.cloud.aiplatform.v1.JobService.ListBatchPredictionJobs
* call.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const readMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListBatchPredictionJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listBatchPredictionJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListBatchPredictionJobs();
listBatchPredictionJobsStream(request, options)
listBatchPredictionJobsStream(request?: protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListBatchPredictionJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listCustomJobs(request, options)
listCustomJobs(request?: protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob[],
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListCustomJobsResponse
]>;
Lists CustomJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.ICustomJob[],
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListCustomJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listCustomJobs(request, options, callback)
listCustomJobs(request: protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, protos.google.cloud.aiplatform.v1.IListCustomJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.ICustomJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, protos.google.cloud.aiplatform.v1.IListCustomJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.ICustomJob>
|
Type | Description |
void |
listCustomJobs(request, callback)
listCustomJobs(request: protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, protos.google.cloud.aiplatform.v1.IListCustomJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.ICustomJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, protos.google.cloud.aiplatform.v1.IListCustomJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.ICustomJob>
|
Type | Description |
void |
listCustomJobsAsync(request, options)
listCustomJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.ICustomJob>;
Equivalent to listCustomJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.ICustomJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to list the CustomJobs from.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
* Typically obtained via
* ListCustomJobsResponse.next_page_token google.cloud.aiplatform.v1.ListCustomJobsResponse.next_page_token
* of the previous
* JobService.ListCustomJobs google.cloud.aiplatform.v1.JobService.ListCustomJobs
* call.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const readMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListCustomJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listCustomJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListCustomJobs();
listCustomJobsStream(request, options)
listCustomJobsStream(request?: protos.google.cloud.aiplatform.v1.IListCustomJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListCustomJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listDataLabelingJobs(request, options)
listDataLabelingJobs(request?: protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob[],
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse
]>;
Lists DataLabelingJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IDataLabelingJob[],
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listDataLabelingJobs(request, options, callback)
listDataLabelingJobs(request: protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IDataLabelingJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IDataLabelingJob>
|
Type | Description |
void |
listDataLabelingJobs(request, callback)
listDataLabelingJobs(request: protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IDataLabelingJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, protos.google.cloud.aiplatform.v1.IListDataLabelingJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IDataLabelingJob>
|
Type | Description |
void |
listDataLabelingJobsAsync(request, options)
listDataLabelingJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.IDataLabelingJob>;
Equivalent to listDataLabelingJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.IDataLabelingJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The parent of the DataLabelingJob.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read. FieldMask represents a set of
* symbolic field paths. For example, the mask can be `paths: "name"`. The
* "name" here is a field in DataLabelingJob.
* If this field is not set, all fields of the DataLabelingJob are returned.
*/
// const readMask = {}
/**
* A comma-separated list of fields to order by, sorted in ascending order by
* default.
* Use `desc` after a field name for descending.
*/
// const orderBy = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListDataLabelingJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listDataLabelingJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListDataLabelingJobs();
listDataLabelingJobsStream(request, options)
listDataLabelingJobsStream(request?: protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListDataLabelingJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listHyperparameterTuningJobs(request, options)
listHyperparameterTuningJobs(request?: protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob[],
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse
]>;
Lists HyperparameterTuningJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob[],
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listHyperparameterTuningJobs(request, options, callback)
listHyperparameterTuningJobs(request: protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob>
|
Type | Description |
void |
listHyperparameterTuningJobs(request, callback)
listHyperparameterTuningJobs(request: protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob>
|
Type | Description |
void |
listHyperparameterTuningJobsAsync(request, options)
listHyperparameterTuningJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob>;
Equivalent to listHyperparameterTuningJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.IHyperparameterTuningJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to list the
* HyperparameterTuningJobs from. Format:
* `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
* Typically obtained via
* ListHyperparameterTuningJobsResponse.next_page_token google.cloud.aiplatform.v1.ListHyperparameterTuningJobsResponse.next_page_token
* of the previous
* JobService.ListHyperparameterTuningJobs google.cloud.aiplatform.v1.JobService.ListHyperparameterTuningJobs
* call.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const readMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListHyperparameterTuningJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listHyperparameterTuningJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListHyperparameterTuningJobs();
listHyperparameterTuningJobsStream(request, options)
listHyperparameterTuningJobsStream(request?: protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListHyperparameterTuningJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listLocationsAsync(request, options)
listLocationsAsync(request: LocationProtos.google.cloud.location.IListLocationsRequest, options?: CallOptions): AsyncIterable<LocationProtos.google.cloud.location.ILocation>;
Lists information about the supported locations for this service. Returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
LocationProtos.google.cloud.location.IListLocationsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<LocationProtos.google.cloud.location.ILocation> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
const iterable = client.listLocationsAsync(request);
for await (const response of iterable) {
// process response
}
listModelDeploymentMonitoringJobs(request, options)
listModelDeploymentMonitoringJobs(request?: protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob[],
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse
]>;
Lists ModelDeploymentMonitoringJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob[],
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listModelDeploymentMonitoringJobs(request, options, callback)
listModelDeploymentMonitoringJobs(request: protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob>
|
Type | Description |
void |
listModelDeploymentMonitoringJobs(request, callback)
listModelDeploymentMonitoringJobs(request: protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob>
|
Type | Description |
void |
listModelDeploymentMonitoringJobsAsync(request, options)
listModelDeploymentMonitoringJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob>;
Equivalent to listModelDeploymentMonitoringJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The parent of the ModelDeploymentMonitoringJob.
* Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read
*/
// const readMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListModelDeploymentMonitoringJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listModelDeploymentMonitoringJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListModelDeploymentMonitoringJobs();
listModelDeploymentMonitoringJobsStream(request, options)
listModelDeploymentMonitoringJobsStream(request?: protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListModelDeploymentMonitoringJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listNasJobs(request, options)
listNasJobs(request?: protos.google.cloud.aiplatform.v1.IListNasJobsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.INasJob[],
protos.google.cloud.aiplatform.v1.IListNasJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListNasJobsResponse
]>;
Lists NasJobs in a Location.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.INasJob[],
protos.google.cloud.aiplatform.v1.IListNasJobsRequest | null,
protos.google.cloud.aiplatform.v1.IListNasJobsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listNasJobs(request, options, callback)
listNasJobs(request: protos.google.cloud.aiplatform.v1.IListNasJobsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasJobsRequest, protos.google.cloud.aiplatform.v1.IListNasJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasJobsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasJobsRequest, protos.google.cloud.aiplatform.v1.IListNasJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasJob>
|
Type | Description |
void |
listNasJobs(request, callback)
listNasJobs(request: protos.google.cloud.aiplatform.v1.IListNasJobsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasJobsRequest, protos.google.cloud.aiplatform.v1.IListNasJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasJob>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasJobsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasJobsRequest, protos.google.cloud.aiplatform.v1.IListNasJobsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasJob>
|
Type | Description |
void |
listNasJobsAsync(request, options)
listNasJobsAsync(request?: protos.google.cloud.aiplatform.v1.IListNasJobsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.INasJob>;
Equivalent to listNasJobs
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.INasJob> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the Location to list the NasJobs
* from. Format: `projects/{project}/locations/{location}`
*/
// const parent = 'abc123'
/**
* The standard list filter.
* Supported fields:
* * `display_name` supports `=`, `!=` comparisons, and `:` wildcard.
* * `state` supports `=`, `!=` comparisons.
* * `create_time` supports `=`, `!=`,`<`,><=`,`>`, `>=` comparisons.
* `create_time` must be in RFC 3339 format.
* * `labels` supports general map functions that is:
* `labels.key=value` - key:value equality
* `labels.key:* - key existence
* Some examples of using the filter are:
* * `state="JOB_STATE_SUCCEEDED" AND display_name:"my_job_*"`
* * `state!="JOB_STATE_FAILED" OR display_name="my_job"`
* * `NOT display_name="my_job"`
* * `create_time>"2021-05-18T00:00:00Z"`
* * `labels.keyA=valueA`
* * `labels.keyB:*`
*/
// const filter = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
* Typically obtained via
* ListNasJobsResponse.next_page_token google.cloud.aiplatform.v1.ListNasJobsResponse.next_page_token
* of the previous
* JobService.ListNasJobs google.cloud.aiplatform.v1.JobService.ListNasJobs
* call.
*/
// const pageToken = 'abc123'
/**
* Mask specifying which fields to read.
*/
// const readMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListNasJobs() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listNasJobsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListNasJobs();
listNasJobsStream(request, options)
listNasJobsStream(request?: protos.google.cloud.aiplatform.v1.IListNasJobsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasJobsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listNasTrialDetails(request, options)
listNasTrialDetails(request?: protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.INasTrialDetail[],
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest | null,
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse
]>;
List top NasTrialDetails of a NasJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.INasTrialDetail[],
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest | null,
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
listNasTrialDetails(request, options, callback)
listNasTrialDetails(request: protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasTrialDetail>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasTrialDetail>
|
Type | Description |
void |
listNasTrialDetails(request, callback)
listNasTrialDetails(request: protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasTrialDetail>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, protos.google.cloud.aiplatform.v1.IListNasTrialDetailsResponse | null | undefined, protos.google.cloud.aiplatform.v1.INasTrialDetail>
|
Type | Description |
void |
listNasTrialDetailsAsync(request, options)
listNasTrialDetailsAsync(request?: protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.INasTrialDetail>;
Equivalent to listNasTrialDetails
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.INasTrialDetail> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The name of the NasJob resource.
* Format:
* `projects/{project}/locations/{location}/nasJobs/{nas_job}`
*/
// const parent = 'abc123'
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* The standard list page token.
* Typically obtained via
* ListNasTrialDetailsResponse.next_page_token google.cloud.aiplatform.v1.ListNasTrialDetailsResponse.next_page_token
* of the previous
* JobService.ListNasTrialDetails google.cloud.aiplatform.v1.JobService.ListNasTrialDetails
* call.
*/
// const pageToken = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callListNasTrialDetails() {
// Construct request
const request = {
parent,
};
// Run request
const iterable = await aiplatformClient.listNasTrialDetailsAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callListNasTrialDetails();
listNasTrialDetailsStream(request, options)
listNasTrialDetailsStream(request?: protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IListNasTrialDetailsRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
listOperationsAsync(request, options)
listOperationsAsync(request: protos.google.longrunning.ListOperationsRequest, options?: gax.CallOptions): AsyncIterable<protos.google.longrunning.ListOperationsResponse>;
Lists operations that match the specified filter in the request. If the server doesn't support this method, it returns UNIMPLEMENTED
. Returns an iterable object.
For-await-of syntax is used with the iterable to recursively get response element on-demand.
Name | Description |
request |
protos.google.longrunning.ListOperationsRequest
The request object that will be sent. |
options |
gax.CallOptions
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
Type | Description |
AsyncIterable<protos.google.longrunning.ListOperationsResponse> | {Object} An iterable Object that conforms to iteration protocols. |
const client = longrunning.operationsClient();
for await (const response of client.listOperationsAsync(request));
// doThingsWith(response)
locationPath(project, location)
locationPath(project: string, location: string): string;
Return a fully-qualified location resource name string.
Name | Description |
project |
string
|
location |
string
|
Type | Description |
string | {string} Resource name string. |
matchAnnotationFromAnnotationName(annotationName)
matchAnnotationFromAnnotationName(annotationName: string): string | number;
Parse the annotation from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the annotation. |
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName)
matchAnnotationSpecFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the annotation_spec from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the annotation_spec. |
matchArtifactFromArtifactName(artifactName)
matchArtifactFromArtifactName(artifactName: string): string | number;
Parse the artifact from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the artifact. |
matchBatchPredictionJobFromBatchPredictionJobName(batchPredictionJobName)
matchBatchPredictionJobFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the batch_prediction_job from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the batch_prediction_job. |
matchContextFromContextName(contextName)
matchContextFromContextName(contextName: string): string | number;
Parse the context from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the context. |
matchCustomJobFromCustomJobName(customJobName)
matchCustomJobFromCustomJobName(customJobName: string): string | number;
Parse the custom_job from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the custom_job. |
matchDataItemFromAnnotationName(annotationName)
matchDataItemFromAnnotationName(annotationName: string): string | number;
Parse the data_item from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the data_item. |
matchDataItemFromDataItemName(dataItemName)
matchDataItemFromDataItemName(dataItemName: string): string | number;
Parse the data_item from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the data_item. |
matchDataLabelingJobFromDataLabelingJobName(dataLabelingJobName)
matchDataLabelingJobFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the data_labeling_job from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the data_labeling_job. |
matchDatasetFromAnnotationName(annotationName)
matchDatasetFromAnnotationName(annotationName: string): string | number;
Parse the dataset from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromAnnotationSpecName(annotationSpecName)
matchDatasetFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the dataset from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromDataItemName(dataItemName)
matchDatasetFromDataItemName(dataItemName: string): string | number;
Parse the dataset from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromDatasetName(datasetName)
matchDatasetFromDatasetName(datasetName: string): string | number;
Parse the dataset from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchDatasetFromSavedQueryName(savedQueryName)
matchDatasetFromSavedQueryName(savedQueryName: string): string | number;
Parse the dataset from SavedQuery resource.
Name | Description |
savedQueryName |
string
A fully-qualified path representing SavedQuery resource. |
Type | Description |
string | number | {string} A string representing the dataset. |
matchEndpointFromEndpointName(endpointName)
matchEndpointFromEndpointName(endpointName: string): string | number;
Parse the endpoint from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the endpoint. |
matchEntityTypeFromEntityTypeName(entityTypeName)
matchEntityTypeFromEntityTypeName(entityTypeName: string): string | number;
Parse the entity_type from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the entity_type. |
matchEntityTypeFromFeatureName(featureName)
matchEntityTypeFromFeatureName(featureName: string): string | number;
Parse the entity_type from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the entity_type. |
matchEvaluationFromModelEvaluationName(modelEvaluationName)
matchEvaluationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the evaluation from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the evaluation. |
matchEvaluationFromModelEvaluationSliceName(modelEvaluationSliceName)
matchEvaluationFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the evaluation from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the evaluation. |
matchExecutionFromExecutionName(executionName)
matchExecutionFromExecutionName(executionName: string): string | number;
Parse the execution from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the execution. |
matchExperimentFromTensorboardExperimentName(tensorboardExperimentName)
matchExperimentFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the experiment from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchExperimentFromTensorboardRunName(tensorboardRunName)
matchExperimentFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the experiment from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchExperimentFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchExperimentFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the experiment from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the experiment. |
matchFeatureFromFeatureName(featureName)
matchFeatureFromFeatureName(featureName: string): string | number;
Parse the feature from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the feature. |
matchFeaturestoreFromEntityTypeName(entityTypeName)
matchFeaturestoreFromEntityTypeName(entityTypeName: string): string | number;
Parse the featurestore from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchFeaturestoreFromFeatureName(featureName)
matchFeaturestoreFromFeatureName(featureName: string): string | number;
Parse the featurestore from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchFeaturestoreFromFeaturestoreName(featurestoreName)
matchFeaturestoreFromFeaturestoreName(featurestoreName: string): string | number;
Parse the featurestore from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the featurestore. |
matchHyperparameterTuningJobFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchHyperparameterTuningJobFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the hyperparameter_tuning_job from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the hyperparameter_tuning_job. |
matchIndexEndpointFromIndexEndpointName(indexEndpointName)
matchIndexEndpointFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the index_endpoint from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the index_endpoint. |
matchIndexFromIndexName(indexName)
matchIndexFromIndexName(indexName: string): string | number;
Parse the index from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the index. |
matchLocationFromAnnotationName(annotationName)
matchLocationFromAnnotationName(annotationName: string): string | number;
Parse the location from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromAnnotationSpecName(annotationSpecName)
matchLocationFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the location from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromArtifactName(artifactName)
matchLocationFromArtifactName(artifactName: string): string | number;
Parse the location from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromBatchPredictionJobName(batchPredictionJobName)
matchLocationFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the location from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromContextName(contextName)
matchLocationFromContextName(contextName: string): string | number;
Parse the location from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromCustomJobName(customJobName)
matchLocationFromCustomJobName(customJobName: string): string | number;
Parse the location from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDataItemName(dataItemName)
matchLocationFromDataItemName(dataItemName: string): string | number;
Parse the location from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDataLabelingJobName(dataLabelingJobName)
matchLocationFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the location from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromDatasetName(datasetName)
matchLocationFromDatasetName(datasetName: string): string | number;
Parse the location from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromEndpointName(endpointName)
matchLocationFromEndpointName(endpointName: string): string | number;
Parse the location from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromEntityTypeName(entityTypeName)
matchLocationFromEntityTypeName(entityTypeName: string): string | number;
Parse the location from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromExecutionName(executionName)
matchLocationFromExecutionName(executionName: string): string | number;
Parse the location from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromFeatureName(featureName)
matchLocationFromFeatureName(featureName: string): string | number;
Parse the location from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromFeaturestoreName(featurestoreName)
matchLocationFromFeaturestoreName(featurestoreName: string): string | number;
Parse the location from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchLocationFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the location from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromIndexEndpointName(indexEndpointName)
matchLocationFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the location from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromIndexName(indexName)
matchLocationFromIndexName(indexName: string): string | number;
Parse the location from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromLocationName(locationName)
matchLocationFromLocationName(locationName: string): string | number;
Parse the location from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromMetadataSchemaName(metadataSchemaName)
matchLocationFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the location from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromMetadataStoreName(metadataStoreName)
matchLocationFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the location from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchLocationFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the location from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelEvaluationName(modelEvaluationName)
matchLocationFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the location from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelEvaluationSliceName(modelEvaluationSliceName)
matchLocationFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the location from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromModelName(modelName)
matchLocationFromModelName(modelName: string): string | number;
Parse the location from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromNasJobName(nasJobName)
matchLocationFromNasJobName(nasJobName: string): string | number;
Parse the location from NasJob resource.
Name | Description |
nasJobName |
string
A fully-qualified path representing NasJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromNasTrialDetailName(nasTrialDetailName)
matchLocationFromNasTrialDetailName(nasTrialDetailName: string): string | number;
Parse the location from NasTrialDetail resource.
Name | Description |
nasTrialDetailName |
string
A fully-qualified path representing NasTrialDetail resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromPipelineJobName(pipelineJobName)
matchLocationFromPipelineJobName(pipelineJobName: string): string | number;
Parse the location from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromSavedQueryName(savedQueryName)
matchLocationFromSavedQueryName(savedQueryName: string): string | number;
Parse the location from SavedQuery resource.
Name | Description |
savedQueryName |
string
A fully-qualified path representing SavedQuery resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromSpecialistPoolName(specialistPoolName)
matchLocationFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the location from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromStudyName(studyName)
matchLocationFromStudyName(studyName: string): string | number;
Parse the location from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardExperimentName(tensorboardExperimentName)
matchLocationFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the location from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardName(tensorboardName)
matchLocationFromTensorboardName(tensorboardName: string): string | number;
Parse the location from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardRunName(tensorboardRunName)
matchLocationFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the location from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchLocationFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the location from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTrainingPipelineName(trainingPipelineName)
matchLocationFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the location from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchLocationFromTrialName(trialName)
matchLocationFromTrialName(trialName: string): string | number;
Parse the location from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the location. |
matchMetadataSchemaFromMetadataSchemaName(metadataSchemaName)
matchMetadataSchemaFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the metadata_schema from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the metadata_schema. |
matchMetadataStoreFromArtifactName(artifactName)
matchMetadataStoreFromArtifactName(artifactName: string): string | number;
Parse the metadata_store from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromContextName(contextName)
matchMetadataStoreFromContextName(contextName: string): string | number;
Parse the metadata_store from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromExecutionName(executionName)
matchMetadataStoreFromExecutionName(executionName: string): string | number;
Parse the metadata_store from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromMetadataSchemaName(metadataSchemaName)
matchMetadataStoreFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the metadata_store from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchMetadataStoreFromMetadataStoreName(metadataStoreName)
matchMetadataStoreFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the metadata_store from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the metadata_store. |
matchModelDeploymentMonitoringJobFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchModelDeploymentMonitoringJobFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the model_deployment_monitoring_job from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the model_deployment_monitoring_job. |
matchModelFromModelEvaluationName(modelEvaluationName)
matchModelFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the model from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchModelFromModelEvaluationSliceName(modelEvaluationSliceName)
matchModelFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the model from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchModelFromModelName(modelName)
matchModelFromModelName(modelName: string): string | number;
Parse the model from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the model. |
matchNasJobFromNasJobName(nasJobName)
matchNasJobFromNasJobName(nasJobName: string): string | number;
Parse the nas_job from NasJob resource.
Name | Description |
nasJobName |
string
A fully-qualified path representing NasJob resource. |
Type | Description |
string | number | {string} A string representing the nas_job. |
matchNasJobFromNasTrialDetailName(nasTrialDetailName)
matchNasJobFromNasTrialDetailName(nasTrialDetailName: string): string | number;
Parse the nas_job from NasTrialDetail resource.
Name | Description |
nasTrialDetailName |
string
A fully-qualified path representing NasTrialDetail resource. |
Type | Description |
string | number | {string} A string representing the nas_job. |
matchNasTrialDetailFromNasTrialDetailName(nasTrialDetailName)
matchNasTrialDetailFromNasTrialDetailName(nasTrialDetailName: string): string | number;
Parse the nas_trial_detail from NasTrialDetail resource.
Name | Description |
nasTrialDetailName |
string
A fully-qualified path representing NasTrialDetail resource. |
Type | Description |
string | number | {string} A string representing the nas_trial_detail. |
matchPipelineJobFromPipelineJobName(pipelineJobName)
matchPipelineJobFromPipelineJobName(pipelineJobName: string): string | number;
Parse the pipeline_job from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the pipeline_job. |
matchProjectFromAnnotationName(annotationName)
matchProjectFromAnnotationName(annotationName: string): string | number;
Parse the project from Annotation resource.
Name | Description |
annotationName |
string
A fully-qualified path representing Annotation resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromAnnotationSpecName(annotationSpecName)
matchProjectFromAnnotationSpecName(annotationSpecName: string): string | number;
Parse the project from AnnotationSpec resource.
Name | Description |
annotationSpecName |
string
A fully-qualified path representing AnnotationSpec resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromArtifactName(artifactName)
matchProjectFromArtifactName(artifactName: string): string | number;
Parse the project from Artifact resource.
Name | Description |
artifactName |
string
A fully-qualified path representing Artifact resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromBatchPredictionJobName(batchPredictionJobName)
matchProjectFromBatchPredictionJobName(batchPredictionJobName: string): string | number;
Parse the project from BatchPredictionJob resource.
Name | Description |
batchPredictionJobName |
string
A fully-qualified path representing BatchPredictionJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromContextName(contextName)
matchProjectFromContextName(contextName: string): string | number;
Parse the project from Context resource.
Name | Description |
contextName |
string
A fully-qualified path representing Context resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromCustomJobName(customJobName)
matchProjectFromCustomJobName(customJobName: string): string | number;
Parse the project from CustomJob resource.
Name | Description |
customJobName |
string
A fully-qualified path representing CustomJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDataItemName(dataItemName)
matchProjectFromDataItemName(dataItemName: string): string | number;
Parse the project from DataItem resource.
Name | Description |
dataItemName |
string
A fully-qualified path representing DataItem resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDataLabelingJobName(dataLabelingJobName)
matchProjectFromDataLabelingJobName(dataLabelingJobName: string): string | number;
Parse the project from DataLabelingJob resource.
Name | Description |
dataLabelingJobName |
string
A fully-qualified path representing DataLabelingJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromDatasetName(datasetName)
matchProjectFromDatasetName(datasetName: string): string | number;
Parse the project from Dataset resource.
Name | Description |
datasetName |
string
A fully-qualified path representing Dataset resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromEndpointName(endpointName)
matchProjectFromEndpointName(endpointName: string): string | number;
Parse the project from Endpoint resource.
Name | Description |
endpointName |
string
A fully-qualified path representing Endpoint resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromEntityTypeName(entityTypeName)
matchProjectFromEntityTypeName(entityTypeName: string): string | number;
Parse the project from EntityType resource.
Name | Description |
entityTypeName |
string
A fully-qualified path representing EntityType resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromExecutionName(executionName)
matchProjectFromExecutionName(executionName: string): string | number;
Parse the project from Execution resource.
Name | Description |
executionName |
string
A fully-qualified path representing Execution resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromFeatureName(featureName)
matchProjectFromFeatureName(featureName: string): string | number;
Parse the project from Feature resource.
Name | Description |
featureName |
string
A fully-qualified path representing Feature resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromFeaturestoreName(featurestoreName)
matchProjectFromFeaturestoreName(featurestoreName: string): string | number;
Parse the project from Featurestore resource.
Name | Description |
featurestoreName |
string
A fully-qualified path representing Featurestore resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromHyperparameterTuningJobName(hyperparameterTuningJobName)
matchProjectFromHyperparameterTuningJobName(hyperparameterTuningJobName: string): string | number;
Parse the project from HyperparameterTuningJob resource.
Name | Description |
hyperparameterTuningJobName |
string
A fully-qualified path representing HyperparameterTuningJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromIndexEndpointName(indexEndpointName)
matchProjectFromIndexEndpointName(indexEndpointName: string): string | number;
Parse the project from IndexEndpoint resource.
Name | Description |
indexEndpointName |
string
A fully-qualified path representing IndexEndpoint resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromIndexName(indexName)
matchProjectFromIndexName(indexName: string): string | number;
Parse the project from Index resource.
Name | Description |
indexName |
string
A fully-qualified path representing Index resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromLocationName(locationName)
matchProjectFromLocationName(locationName: string): string | number;
Parse the project from Location resource.
Name | Description |
locationName |
string
A fully-qualified path representing Location resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromMetadataSchemaName(metadataSchemaName)
matchProjectFromMetadataSchemaName(metadataSchemaName: string): string | number;
Parse the project from MetadataSchema resource.
Name | Description |
metadataSchemaName |
string
A fully-qualified path representing MetadataSchema resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromMetadataStoreName(metadataStoreName)
matchProjectFromMetadataStoreName(metadataStoreName: string): string | number;
Parse the project from MetadataStore resource.
Name | Description |
metadataStoreName |
string
A fully-qualified path representing MetadataStore resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName)
matchProjectFromModelDeploymentMonitoringJobName(modelDeploymentMonitoringJobName: string): string | number;
Parse the project from ModelDeploymentMonitoringJob resource.
Name | Description |
modelDeploymentMonitoringJobName |
string
A fully-qualified path representing ModelDeploymentMonitoringJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelEvaluationName(modelEvaluationName)
matchProjectFromModelEvaluationName(modelEvaluationName: string): string | number;
Parse the project from ModelEvaluation resource.
Name | Description |
modelEvaluationName |
string
A fully-qualified path representing ModelEvaluation resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelEvaluationSliceName(modelEvaluationSliceName)
matchProjectFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the project from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromModelName(modelName)
matchProjectFromModelName(modelName: string): string | number;
Parse the project from Model resource.
Name | Description |
modelName |
string
A fully-qualified path representing Model resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromNasJobName(nasJobName)
matchProjectFromNasJobName(nasJobName: string): string | number;
Parse the project from NasJob resource.
Name | Description |
nasJobName |
string
A fully-qualified path representing NasJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromNasTrialDetailName(nasTrialDetailName)
matchProjectFromNasTrialDetailName(nasTrialDetailName: string): string | number;
Parse the project from NasTrialDetail resource.
Name | Description |
nasTrialDetailName |
string
A fully-qualified path representing NasTrialDetail resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromPipelineJobName(pipelineJobName)
matchProjectFromPipelineJobName(pipelineJobName: string): string | number;
Parse the project from PipelineJob resource.
Name | Description |
pipelineJobName |
string
A fully-qualified path representing PipelineJob resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromSavedQueryName(savedQueryName)
matchProjectFromSavedQueryName(savedQueryName: string): string | number;
Parse the project from SavedQuery resource.
Name | Description |
savedQueryName |
string
A fully-qualified path representing SavedQuery resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromSpecialistPoolName(specialistPoolName)
matchProjectFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the project from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromStudyName(studyName)
matchProjectFromStudyName(studyName: string): string | number;
Parse the project from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardExperimentName(tensorboardExperimentName)
matchProjectFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the project from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardName(tensorboardName)
matchProjectFromTensorboardName(tensorboardName: string): string | number;
Parse the project from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardRunName(tensorboardRunName)
matchProjectFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the project from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchProjectFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the project from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTrainingPipelineName(trainingPipelineName)
matchProjectFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the project from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchProjectFromTrialName(trialName)
matchProjectFromTrialName(trialName: string): string | number;
Parse the project from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the project. |
matchRunFromTensorboardRunName(tensorboardRunName)
matchRunFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the run from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the run. |
matchRunFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchRunFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the run from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the run. |
matchSavedQueryFromSavedQueryName(savedQueryName)
matchSavedQueryFromSavedQueryName(savedQueryName: string): string | number;
Parse the saved_query from SavedQuery resource.
Name | Description |
savedQueryName |
string
A fully-qualified path representing SavedQuery resource. |
Type | Description |
string | number | {string} A string representing the saved_query. |
matchSliceFromModelEvaluationSliceName(modelEvaluationSliceName)
matchSliceFromModelEvaluationSliceName(modelEvaluationSliceName: string): string | number;
Parse the slice from ModelEvaluationSlice resource.
Name | Description |
modelEvaluationSliceName |
string
A fully-qualified path representing ModelEvaluationSlice resource. |
Type | Description |
string | number | {string} A string representing the slice. |
matchSpecialistPoolFromSpecialistPoolName(specialistPoolName)
matchSpecialistPoolFromSpecialistPoolName(specialistPoolName: string): string | number;
Parse the specialist_pool from SpecialistPool resource.
Name | Description |
specialistPoolName |
string
A fully-qualified path representing SpecialistPool resource. |
Type | Description |
string | number | {string} A string representing the specialist_pool. |
matchStudyFromStudyName(studyName)
matchStudyFromStudyName(studyName: string): string | number;
Parse the study from Study resource.
Name | Description |
studyName |
string
A fully-qualified path representing Study resource. |
Type | Description |
string | number | {string} A string representing the study. |
matchStudyFromTrialName(trialName)
matchStudyFromTrialName(trialName: string): string | number;
Parse the study from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the study. |
matchTensorboardFromTensorboardExperimentName(tensorboardExperimentName)
matchTensorboardFromTensorboardExperimentName(tensorboardExperimentName: string): string | number;
Parse the tensorboard from TensorboardExperiment resource.
Name | Description |
tensorboardExperimentName |
string
A fully-qualified path representing TensorboardExperiment resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardName(tensorboardName)
matchTensorboardFromTensorboardName(tensorboardName: string): string | number;
Parse the tensorboard from Tensorboard resource.
Name | Description |
tensorboardName |
string
A fully-qualified path representing Tensorboard resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardRunName(tensorboardRunName)
matchTensorboardFromTensorboardRunName(tensorboardRunName: string): string | number;
Parse the tensorboard from TensorboardRun resource.
Name | Description |
tensorboardRunName |
string
A fully-qualified path representing TensorboardRun resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTensorboardFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchTensorboardFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the tensorboard from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the tensorboard. |
matchTimeSeriesFromTensorboardTimeSeriesName(tensorboardTimeSeriesName)
matchTimeSeriesFromTensorboardTimeSeriesName(tensorboardTimeSeriesName: string): string | number;
Parse the time_series from TensorboardTimeSeries resource.
Name | Description |
tensorboardTimeSeriesName |
string
A fully-qualified path representing TensorboardTimeSeries resource. |
Type | Description |
string | number | {string} A string representing the time_series. |
matchTrainingPipelineFromTrainingPipelineName(trainingPipelineName)
matchTrainingPipelineFromTrainingPipelineName(trainingPipelineName: string): string | number;
Parse the training_pipeline from TrainingPipeline resource.
Name | Description |
trainingPipelineName |
string
A fully-qualified path representing TrainingPipeline resource. |
Type | Description |
string | number | {string} A string representing the training_pipeline. |
matchTrialFromTrialName(trialName)
matchTrialFromTrialName(trialName: string): string | number;
Parse the trial from Trial resource.
Name | Description |
trialName |
string
A fully-qualified path representing Trial resource. |
Type | Description |
string | number | {string} A string representing the trial. |
metadataSchemaPath(project, location, metadataStore, metadataSchema)
metadataSchemaPath(project: string, location: string, metadataStore: string, metadataSchema: string): string;
Return a fully-qualified metadataSchema resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
metadataSchema |
string
|
Type | Description |
string | {string} Resource name string. |
metadataStorePath(project, location, metadataStore)
metadataStorePath(project: string, location: string, metadataStore: string): string;
Return a fully-qualified metadataStore resource name string.
Name | Description |
project |
string
|
location |
string
|
metadataStore |
string
|
Type | Description |
string | {string} Resource name string. |
modelDeploymentMonitoringJobPath(project, location, modelDeploymentMonitoringJob)
modelDeploymentMonitoringJobPath(project: string, location: string, modelDeploymentMonitoringJob: string): string;
Return a fully-qualified modelDeploymentMonitoringJob resource name string.
Name | Description |
project |
string
|
location |
string
|
modelDeploymentMonitoringJob |
string
|
Type | Description |
string | {string} Resource name string. |
modelEvaluationPath(project, location, model, evaluation)
modelEvaluationPath(project: string, location: string, model: string, evaluation: string): string;
Return a fully-qualified modelEvaluation resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
evaluation |
string
|
Type | Description |
string | {string} Resource name string. |
modelEvaluationSlicePath(project, location, model, evaluation, slice)
modelEvaluationSlicePath(project: string, location: string, model: string, evaluation: string, slice: string): string;
Return a fully-qualified modelEvaluationSlice resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
evaluation |
string
|
slice |
string
|
Type | Description |
string | {string} Resource name string. |
modelPath(project, location, model)
modelPath(project: string, location: string, model: string): string;
Return a fully-qualified model resource name string.
Name | Description |
project |
string
|
location |
string
|
model |
string
|
Type | Description |
string | {string} Resource name string. |
nasJobPath(project, location, nasJob)
nasJobPath(project: string, location: string, nasJob: string): string;
Return a fully-qualified nasJob resource name string.
Name | Description |
project |
string
|
location |
string
|
nasJob |
string
|
Type | Description |
string | {string} Resource name string. |
nasTrialDetailPath(project, location, nasJob, nasTrialDetail)
nasTrialDetailPath(project: string, location: string, nasJob: string, nasTrialDetail: string): string;
Return a fully-qualified nasTrialDetail resource name string.
Name | Description |
project |
string
|
location |
string
|
nasJob |
string
|
nasTrialDetail |
string
|
Type | Description |
string | {string} Resource name string. |
pauseModelDeploymentMonitoringJob(request, options)
pauseModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]>;
Pauses a ModelDeploymentMonitoringJob. If the job is running, the server makes a best effort to cancel the job. Will mark to 'PAUSED'.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the ModelDeploymentMonitoringJob to pause.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callPauseModelDeploymentMonitoringJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.pauseModelDeploymentMonitoringJob(request);
console.log(response);
}
callPauseModelDeploymentMonitoringJob();
pauseModelDeploymentMonitoringJob(request, options, callback)
pauseModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
pauseModelDeploymentMonitoringJob(request, callback)
pauseModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IPauseModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
pipelineJobPath(project, location, pipelineJob)
pipelineJobPath(project: string, location: string, pipelineJob: string): string;
Return a fully-qualified pipelineJob resource name string.
Name | Description |
project |
string
|
location |
string
|
pipelineJob |
string
|
Type | Description |
string | {string} Resource name string. |
resumeModelDeploymentMonitoringJob(request, options)
resumeModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]>;
Resumes a paused ModelDeploymentMonitoringJob. It will start to run from next scheduled time. A deleted ModelDeploymentMonitoringJob can't be resumed.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.protobuf.IEmpty,
(protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | undefined),
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#regular-methods) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The resource name of the ModelDeploymentMonitoringJob to resume.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const name = 'abc123'
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callResumeModelDeploymentMonitoringJob() {
// Construct request
const request = {
name,
};
// Run request
const response = await aiplatformClient.resumeModelDeploymentMonitoringJob(request);
console.log(response);
}
callResumeModelDeploymentMonitoringJob();
resumeModelDeploymentMonitoringJob(request, options, callback)
resumeModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
resumeModelDeploymentMonitoringJob(request, callback)
resumeModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest, callback: Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest
|
callback |
Callback<protos.google.protobuf.IEmpty, protos.google.cloud.aiplatform.v1.IResumeModelDeploymentMonitoringJobRequest | null | undefined, {} | null | undefined>
|
Type | Description |
void |
savedQueryPath(project, location, dataset, savedQuery)
savedQueryPath(project: string, location: string, dataset: string, savedQuery: string): string;
Return a fully-qualified savedQuery resource name string.
Name | Description |
project |
string
|
location |
string
|
dataset |
string
|
savedQuery |
string
|
Type | Description |
string | {string} Resource name string. |
searchModelDeploymentMonitoringStatsAnomalies(request, options)
searchModelDeploymentMonitoringStatsAnomalies(request?: protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, options?: CallOptions): Promise<[
protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies[],
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest | null,
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse
]>;
Searches Model Monitoring Statistics generated within a given time window.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies[],
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest | null,
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse
]> | {Promise} - The promise which resolves to an array. The first element of the array is Array of . The client library will perform auto-pagination by default: it will call the API as many times as needed and will merge results from all the pages into this array. Note that it can affect your quota. We recommend using |
searchModelDeploymentMonitoringStatsAnomalies(request, options, callback)
searchModelDeploymentMonitoringStatsAnomalies(request: protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, options: CallOptions, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest
|
options |
CallOptions
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies>
|
Type | Description |
void |
searchModelDeploymentMonitoringStatsAnomalies(request, callback)
searchModelDeploymentMonitoringStatsAnomalies(request: protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, callback: PaginationCallback<protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest
|
callback |
PaginationCallback<protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesResponse | null | undefined, protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies>
|
Type | Description |
void |
searchModelDeploymentMonitoringStatsAnomaliesAsync(request, options)
searchModelDeploymentMonitoringStatsAnomaliesAsync(request?: protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, options?: CallOptions): AsyncIterable<protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies>;
Equivalent to searchModelDeploymentMonitoringStatsAnomalies
, but returns an iterable object.
for
-await
-of
syntax is used with the iterable to get response elements on-demand.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
AsyncIterable<protos.google.cloud.aiplatform.v1.IModelMonitoringStatsAnomalies> | {Object} An iterable Object that allows [async iteration](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols). When you iterate the returned iterable, each element will be an object representing . The API will be called under the hood as needed, once per the page, so you can stop the iteration when you don't need more results. Please see the [documentation](https://github.com/googleapis/gax-nodejs/blob/master/client-libraries.md#auto-pagination) for more details and examples. |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. ModelDeploymentMonitoring Job resource name.
* Format:
* `projects/{project}/locations/{location}/modelDeploymentMonitoringJobs/{model_deployment_monitoring_job}`
*/
// const modelDeploymentMonitoringJob = 'abc123'
/**
* Required. The DeployedModel ID of the
* ModelDeploymentMonitoringObjectiveConfig.deployed_model_id.
*/
// const deployedModelId = 'abc123'
/**
* The feature display name. If specified, only return the stats belonging to
* this feature. Format:
* ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.feature_display_name google.cloud.aiplatform.v1.ModelMonitoringStatsAnomalies.FeatureHistoricStatsAnomalies.feature_display_name,
* example: "user_destination".
*/
// const featureDisplayName = 'abc123'
/**
* Required. Objectives of the stats to retrieve.
*/
// const objectives = 1234
/**
* The standard list page size.
*/
// const pageSize = 1234
/**
* A page token received from a previous
* JobService.SearchModelDeploymentMonitoringStatsAnomalies google.cloud.aiplatform.v1.JobService.SearchModelDeploymentMonitoringStatsAnomalies
* call.
*/
// const pageToken = 'abc123'
/**
* The earliest timestamp of stats being generated.
* If not set, indicates fetching stats till the earliest possible one.
*/
// const startTime = {}
/**
* The latest timestamp of stats being generated.
* If not set, indicates feching stats till the latest possible one.
*/
// const endTime = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callSearchModelDeploymentMonitoringStatsAnomalies() {
// Construct request
const request = {
modelDeploymentMonitoringJob,
deployedModelId,
objectives,
};
// Run request
const iterable = await aiplatformClient.searchModelDeploymentMonitoringStatsAnomaliesAsync(request);
for await (const response of iterable) {
console.log(response);
}
}
callSearchModelDeploymentMonitoringStatsAnomalies();
searchModelDeploymentMonitoringStatsAnomaliesStream(request, options)
searchModelDeploymentMonitoringStatsAnomaliesStream(request?: protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest, options?: CallOptions): Transform;
Equivalent to method.name.toCamelCase()
, but returns a NodeJS Stream object.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.ISearchModelDeploymentMonitoringStatsAnomaliesRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Transform | {Stream} An object stream which emits an object representing on 'data' event. The client library will perform auto-pagination by default: it will call the API as many times as needed. Note that it can affect your quota. We recommend using |
setIamPolicy(request, options, callback)
setIamPolicy(request: IamProtos.google.iam.v1.SetIamPolicyRequest, options?: gax.CallOptions | Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.SetIamPolicyRequest | null | undefined, {} | null | undefined>, callback?: Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.SetIamPolicyRequest | null | undefined, {} | null | undefined>): Promise<IamProtos.google.iam.v1.Policy>;
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Name | Description |
request |
IamProtos.google.iam.v1.SetIamPolicyRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.SetIamPolicyRequest | null | undefined, {} | null | undefined>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<IamProtos.google.iam.v1.Policy, IamProtos.google.iam.v1.SetIamPolicyRequest | null | undefined, {} | null | undefined>
The function which will be called with the result of the API call. The second parameter to the callback is an object representing . |
Type | Description |
Promise<IamProtos.google.iam.v1.Policy> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . The promise has a method named "cancel" which cancels the ongoing API call. |
specialistPoolPath(project, location, specialistPool)
specialistPoolPath(project: string, location: string, specialistPool: string): string;
Return a fully-qualified specialistPool resource name string.
Name | Description |
project |
string
|
location |
string
|
specialistPool |
string
|
Type | Description |
string | {string} Resource name string. |
studyPath(project, location, study)
studyPath(project: string, location: string, study: string): string;
Return a fully-qualified study resource name string.
Name | Description |
project |
string
|
location |
string
|
study |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardExperimentPath(project, location, tensorboard, experiment)
tensorboardExperimentPath(project: string, location: string, tensorboard: string, experiment: string): string;
Return a fully-qualified tensorboardExperiment resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardPath(project, location, tensorboard)
tensorboardPath(project: string, location: string, tensorboard: string): string;
Return a fully-qualified tensorboard resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardRunPath(project, location, tensorboard, experiment, run)
tensorboardRunPath(project: string, location: string, tensorboard: string, experiment: string, run: string): string;
Return a fully-qualified tensorboardRun resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
run |
string
|
Type | Description |
string | {string} Resource name string. |
tensorboardTimeSeriesPath(project, location, tensorboard, experiment, run, timeSeries)
tensorboardTimeSeriesPath(project: string, location: string, tensorboard: string, experiment: string, run: string, timeSeries: string): string;
Return a fully-qualified tensorboardTimeSeries resource name string.
Name | Description |
project |
string
|
location |
string
|
tensorboard |
string
|
experiment |
string
|
run |
string
|
timeSeries |
string
|
Type | Description |
string | {string} Resource name string. |
testIamPermissions(request, options, callback)
testIamPermissions(request: IamProtos.google.iam.v1.TestIamPermissionsRequest, options?: gax.CallOptions | Callback<IamProtos.google.iam.v1.TestIamPermissionsResponse, IamProtos.google.iam.v1.TestIamPermissionsRequest | null | undefined, {} | null | undefined>, callback?: Callback<IamProtos.google.iam.v1.TestIamPermissionsResponse, IamProtos.google.iam.v1.TestIamPermissionsRequest | null | undefined, {} | null | undefined>): Promise<IamProtos.google.iam.v1.TestIamPermissionsResponse>;
Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a NOT_FOUND error.
Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Name | Description |
request |
IamProtos.google.iam.v1.TestIamPermissionsRequest
The request object that will be sent. |
options |
gax.CallOptions | Callback<IamProtos.google.iam.v1.TestIamPermissionsResponse, IamProtos.google.iam.v1.TestIamPermissionsRequest | null | undefined, {} | null | undefined>
Optional parameters. You can override the default settings for this call, e.g, timeout, retries, paginations, etc. See gax.CallOptions for the details. |
callback |
Callback<IamProtos.google.iam.v1.TestIamPermissionsResponse, IamProtos.google.iam.v1.TestIamPermissionsRequest | null | undefined, {} | null | undefined>
The function which will be called with the result of the API call. The second parameter to the callback is an object representing . |
Type | Description |
Promise<IamProtos.google.iam.v1.TestIamPermissionsResponse> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing . The promise has a method named "cancel" which cancels the ongoing API call. |
trainingPipelinePath(project, location, trainingPipeline)
trainingPipelinePath(project: string, location: string, trainingPipeline: string): string;
Return a fully-qualified trainingPipeline resource name string.
Name | Description |
project |
string
|
location |
string
|
trainingPipeline |
string
|
Type | Description |
string | {string} Resource name string. |
trialPath(project, location, study, trial)
trialPath(project: string, location: string, study: string, trial: string): string;
Return a fully-qualified trial resource name string.
Name | Description |
project |
string
|
location |
string
|
study |
string
|
trial |
string
|
Type | Description |
string | {string} Resource name string. |
updateModelDeploymentMonitoringJob(request, options)
updateModelDeploymentMonitoringJob(request?: protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest, options?: CallOptions): Promise<[
LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]>;
Updates a ModelDeploymentMonitoringJob.
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest
The request object that will be sent. |
options |
CallOptions
Call options. See CallOptions for more details. |
Type | Description |
Promise<[
LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>,
protos.google.longrunning.IOperation | undefined,
{} | undefined
]> | {Promise} - The promise which resolves to an array. The first element of the array is an object representing a long running operation. Its |
/**
* This snippet has been automatically generated and should be regarded as a code template only.
* It will require modifications to work.
* It may require correct/in-range values for request initialization.
* TODO(developer): Uncomment these variables before running the sample.
*/
/**
* Required. The model monitoring configuration which replaces the resource on
* the server.
*/
// const modelDeploymentMonitoringJob = {}
/**
* Required. The update mask is used to specify the fields to be overwritten
* in the ModelDeploymentMonitoringJob resource by the update. The fields
* specified in the update_mask are relative to the resource, not the full
* request. A field will be overwritten if it is in the mask. If the user does
* not provide a mask then only the non-empty fields present in the request
* will be overwritten. Set the update_mask to `*` to override all fields. For
* the objective config, the user can either provide the update mask for
* model_deployment_monitoring_objective_configs or any combination of its
* nested fields, such as:
* model_deployment_monitoring_objective_configs.objective_config.training_dataset.
* Updatable fields:
* * `display_name`
* * `model_deployment_monitoring_schedule_config`
* * `model_monitoring_alert_config`
* * `logging_sampling_strategy`
* * `labels`
* * `log_ttl`
* * `enable_monitoring_pipeline_logs`
* . and
* * `model_deployment_monitoring_objective_configs`
* . or
* * `model_deployment_monitoring_objective_configs.objective_config.training_dataset`
* * `model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config`
* * `model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config`
*/
// const updateMask = {}
// Imports the Aiplatform library
const {JobServiceClient} = require('@google-cloud/aiplatform').v1;
// Instantiates a client
const aiplatformClient = new JobServiceClient();
async function callUpdateModelDeploymentMonitoringJob() {
// Construct request
const request = {
modelDeploymentMonitoringJob,
updateMask,
};
// Run request
const [operation] = await aiplatformClient.updateModelDeploymentMonitoringJob(request);
const [response] = await operation.promise();
console.log(response);
}
callUpdateModelDeploymentMonitoringJob();
updateModelDeploymentMonitoringJob(request, options, callback)
updateModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest, options: CallOptions, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest
|
options |
CallOptions
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |
updateModelDeploymentMonitoringJob(request, callback)
updateModelDeploymentMonitoringJob(request: protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest, callback: Callback<LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>): void;
Name | Description |
request |
protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobRequest
|
callback |
Callback<LROperation<protos.google.cloud.aiplatform.v1.IModelDeploymentMonitoringJob, protos.google.cloud.aiplatform.v1.IUpdateModelDeploymentMonitoringJobOperationMetadata>, protos.google.longrunning.IOperation | null | undefined, {} | null | undefined>
|
Type | Description |
void |